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Abstract. Strong-stability-preserving (SSP) time discretization methods have a nonlinear sta-
bility property that makes them particularly suitable for the integration of hyperbolic conservation
laws where discontinuous behaviour is present. Optimal SSP schemes have been previously found
for methods of order 1, 2, and 3, where the number of stages s equals the order p. An optimal
low-storage SSP scheme with s = p = 3 is also known. In this paper, we present a new class of
optimal high-order SSP and low-storage SSP Runge-Kutta schemes with s > p. We find that these
schemes are ultimately more efficient than the known schemes with s = p because the increase in the
allowable time step more than offsets the added computational expense per step. We demonstrate
these efficiencies on a set of scalar conservation laws.
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1. Introduction. The method of lines is a popular semi-discretization method
for the solution of time-dependent partial differential equations (PDEs). The idea
behind it is to first suitably discretize the spatial variables (e.g., by finite differences,
finite volumes, finite elements, or spectral methods) to yield a set of ordinary dif-
ferential equations (ODEs) in time. Then, this set of ODEs can be integrated using
standard time-stepping techniques such as linear multi-step or Runge-Kutta methods.

Standard stability analysis for the solvers of such systems generally focuses on
linear stability. Indeed, such analysis is often adequate when the desired solutions are
smooth. However, solutions to hyperbolic PDEs may not be smooth: Shock waves
or other discontinuous behaviour can develop even from smooth initial data. In such
cases, standard discretizations based on linear stability analysis suffer from poor per-
formance due to the presence of spurious oscillations, overshoots, and progressive
smearing. The numerical solutions obtained from these discretizations often exhibit
a weak form of instability (called nonlinear instability) resulting in unphysical be-
haviour. Accordingly, numerical methods based on a nonlinear stability requirement
are very desirable. Such methods were originally referred to as total variation dimin-
ishing (TVD) [17]; see also the subsequent articles [18, 6]. However, following the
more recent article [7], we refer to them in this paper as strong stability preserving
(SSP) methods.

We are interested in the development, implementation, and analysis of a new
class of optimal SSP Runge-Kutta (SSPRK) time-stepping schemes for the system of
ODEs

U=L{U),
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subject to suitable initial conditions, obtained from applying the method of lines to
the hyperbolic conservation law

(1.1) ut + f(u)y =0.

Here, we assume that (1.1) has been suitably discretized in its spatial variables (e.g.,
using essentially non-oscillatory (ENO) schemes [10], TVD schemes [9], or monotonic
upstream-centered schemes for conservation laws (MUSCL) methods [19]) and U =
U(t) is a vector of discretized variables; i.e., [U(t)]; = U;(t) = u(z;,t). In particular,
if u? is the numerical approximation to u(z;,t,), then TVD discretizations have the
property that the total variation

(1.2) TV(U™) = Z |l —u? |

of the numerical solution does not increase with time; i.e.,
TV (U™ < TV (U").

When combined with a suitable SSP time-stepping scheme, the numerical solution
obtained typically does not exhibit nonlinear instabilities. However, nonlinear insta-
bilities can occur in a numerical solution obtained with, e.g., a TVD or MUSCL spatial
discretization scheme, but a standard (i.e., linearly stable) time-stepping scheme [6].
Hence, strong-stability-preserving time-stepping schemes are a critical part of the
overall solution strategy to (1.1).

It has been known for some time from a result of Goodman and LeVeque [5] that
any method that is TVD in two dimensions is at most first-order accurate. However,
if we relax the strict requirement of TVD, higher-order methods can be constructed
that preserve stability in another suitable norm, such as the maximum norm. These
schemes are what we call strong stability preserving, and their favourable properties
are derived only from convexity arguments. In particular, if the forward Euler method
is strongly stable with a certain CFL number, higher-order SSP Runge-Kutta methods
with a modified CFL number can be constructed as convex combinations of forward
Euler steps with various step sizes [18].

Optimal SSP schemes based on Runge-Kutta methods have been found for accu-
racy orders 1, 2, and 3, where the number of stages s is assumed to be equal to the
order p. Unfortunately, Gottlieb and Shu [6] recently proved that no such four-stage,
fourth-order SSPRK method exists involving just evaluations of L(-). Fourth-order
accuracy has only been obtained at the additional expense of introducing two addi-
tional evaluations of a related operator IN/(), leading to sub-optimal efficiency both
in terms of time-step restriction and memory usage (see Section 2). This appears
to be where the search for higher-order SSPRK methods has stopped, thus leaving
researchers to focus on third-order accurate SSPRK methods.

In this paper, we derive a new class of optimal high-order SSPRK schemes where
the restriction s = p is lifted. For s-stage methods of orders 1 and 2, we provide
proofs of optimality. The SSPRK scheme (4,3) is also proven to be optimal. The
remaining schemes of order 3 and higher and the low-storage schemes are the results
of numerical optimization. We investigate the performance of our new schemes on a
few test problems designed to capture solution features that pose particular difficul-
ties to numerical methods. These features include contact discontinuities, expansion
fans, compressive shocks, and sonic points. The results from these investigations
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indicate that both the standard and low-storage versions of our schemes offer signif-
icant advantages over methods currently available. In particular, our new schemes
have significantly better stability restrictions than the best SSPRK schemes currently
known. Thus, step-size selection can be based more on accuracy requirements rather
than stability requirements, ultimately leading to more efficient integrators. Indeed,
the results based on three important test cases indicate that our new fourth-order
SSPRK scheme offers between 40% and 80% improvements in the effective time-step
restriction over the most popular fourth-order schemes currently in use.

The remainder of this paper unfolds as follows. In Section 2, we describe SSP
schemes and motivate their use. In Section 3, we determine optimal families of SSP
Runge-Kutta schemes up to five stages and order four. We also give optimal low-
storage versions of these schemes. In Section 4, we investigate the performance of our
new SSP Runge-Kutta schemes on a set of scalar conservation laws having solutions
that commonly cause numerical problems. The success of the new methods is mea-
sured relative to the most popular schemes currently in use. Finally, in Section 5, we
summarize our findings and offer plans for future work.

2. SSP Schemes. The concept of strong stability is central to our discussion,
so we begin with its definition.

DEFINITION 2.1. A sequence {U™} is said to be strongly stable in a given norm
|| - || provided that |[U™TY|| < ||U™|| for all n > 0.

We tacitly assume that U™ represents a vector of solution values on a mesh ob-
tained from a method-of-lines approach to solving a PDE. The choice of norm is
arbitrary!, with the TV-norm (1.2) and the infinity norm being two natural possibili-
ties. Clearly, strong stability may not be relevant to the solution of an arbitrary PDE.
However, the class of PDEs (1.1) forms a notable exception. Exact solutions for this
class of problems have a range-diminishing property that forbids existing maxima from
increasing, existing minima from decreasing, and new maxima or minima from form-
ing. Although not precisely a discrete analogue to the range-diminishing property,
the strong-stability property is a useful property to require of a numerical solution
to (1.1): By imposing such a condition on the numerical solution, we can suppress
the formation of spurious oscillations under a suitable restriction on the time-step.
Such oscillations are termed nonlinear instabilities, and are often a precursor for the
numerical solution itself to become completely unstable.

The authors in [7] prove the somewhat surprising result that, under rather general
assumptions, high-order SSP methods must in fact be explicit. Fortunately, many
researchers in fact prefer explicit time discretization methods in order to avoid the
expense? of solving systems of nonlinear equations at each step. Accordingly, in this
paper we will focus on the development of explicit Runge-Kutta methods. Consider
an s-stage, explicit Runge-Kutta method written in the form

(2.1a) v =y
i—1
(2.1b) UD =3 (aiU™ + Atpyp LOW)),  i=1,2,...,5,
k=0
(2.1c) Uttt =),
!Indeed, the results of this paper still apply if we replace the norm || - || by any convex function

that maps into the non-negative real line.
?both in terms of computation time and software development
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where all the a;, > 0 and a;;, = 0 only if 3;; = 0 [17]. This representation of a Runge-
Kutta method can be converted to the standard Butcher array form (see e.g., [8]) in a
straightforward manner; see also [6]. However, the conversion from the Butcher array
form to (2.1) is not unique. For example, the modified Euler scheme

0[0 O
111 0
1 1
2 2
has a one-parameter family of representations of the form (2.1):
1 1
alo =1, agg =1—= A, azn = A, ,31021,,32025—>\,,321=§,

where A € [0,1]. All of these representations are algebraically equivalent [18]; i.e.,
the only differences noticeable between stable implementations of any scheme would
be due to round-off errors. However, different choices of A may lend themselves
more easily to implementation, memory management, or determination of stability
restrictions. Throughout this article, we give representations that naturally allow
stability restrictions to be read from the coefficients of the scheme. Standard Butcher
array forms of the schemes presented are given in Appendix B.

For consistency, we must have that 22;10 a;r =1,i=1,2,...,s. Hence, if both
sets of coefficients i, Bix are positive, then (2.1) is a convex combination of forward
Euler steps with various step sizes %At. The Runge-Kutta scheme written in this
form is particularly convenient to make use of the following result [18, 7]:

THEOREM 2.2. If the forward Euler method is strongly stable under the CFL
restriction At < Atpg, then the Runge-Kulta method (2.1) with By, > 0 is SSP
provided

At < cAtpg,
where ¢ is the CFL coefficient
c=min Yik
ik B

Thus, we can use the result of this theorem to provide a theoretical criterion according
to which we can optimize a given SSPRK method.

SSPRK schemes with negative coefficients 3;;, are also possible with the appropri-
ate interpretation. Following the procedure first suggested in [17], whenever B;; < 0,
the operator L(-) is replaced with the related operator L(-), where L(-) is assumed to
be strongly stable for Euler’s method solved backwards in time for a suitable time-step
restriction. This allows the following generalization Theorem 2.2:

THEOREM 2.3. Let Euler’s method solved forward in time combined with the
spatial discretization L(-) be strongly stable under the CFL restriction At < Atppg.
Let Euler’s method solved backward in time combined with the spatial discretization
L(-) also be strongly stable under the same CFL restriction At < Atpg. Then the
Runge-Kutta method (2.1) is SSP provided

At < cAtpg,
where ¢ is the CFL coefficient

¢ = min ik
Tk | Bikl
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where By L(+) is replaced by szf/() whenever [3;, is negative.

Note: If both L(U®) and L(U®) are required, then the computational cost
and storage requirements for that stage are typically doubled. Moreover, there is the
added inconvenience of having to code the spatial discretization represented by IN/()
These reasons provide the incentive for us to want to avoid negative [3;, as much as
possible when searching for the most efficient SSPRK methods.

We also note that the quantity

. Qg
(2.2) min Gael
obviously depends on the particular representation (2.1) of a given Runge-Kutta
scheme. Accordingly, the CFL restriction is determined by the choice of coefficients
a;j, Bi;j that maximizes (2.2); other choices render bounds that are not as sharp.

We will be comparing a new class of SSPRK methods with s stages and order p
with s > p to methods known in the literature where s = p or some 3;; < 0. We
note that if a method requires n_ extra evaluations of L(-) then the effective number
of stages of that method is m = s+ n_. We find that the new SSPRK methods
can have a significantly greater CFL coefficient (as given in Theorem 2.2) than the
methods currently used in practice. However, we must make a fair comparison as to
the computational cost of a step. This motivates the following definition:

DEFINITION 2.4. The effective CFL coefficient of an SSPRK method of order p
is cs*[s where ¢ is the CFL coefficient of the method, s* is the minimum number of
stages to theoretically achieve order p, and s is the number of stages required for one
step of the method.

It is well known (see e.g., [8]) that a Runge-Kutta method having s stages can
achieve order p for s = p < 4. For p > 4, it is required that s > p. Because the cases
we consider in this paper involve only p < 4, we always take s* = p here.

As conjectured in Shu and Osher [18] and subsequently proven in Gottlieb and
Shu [6], the optimal two-stage, order-two SSPRK scheme is the modified Euler scheme,

UM = U™+ AtL(U™),
1 1 1
Urtt = —un + UM 4 AtL(UW).
2 2 2
It has a CFL restriction At < Atpg, which implies a CFL coefficient of 1. Henceforth,
we will refer to this scheme as SSP(2,2). In general, we adopt the convention of
referring to an s-stage, order-p SSPRK scheme as SSP(s,p).

Shu and Osher [18] also conjectured that the optimal three-stage, order-three
SSPRK scheme is

UM = U + AtL(U™),
U® = %U" + iU(l) + 1Az:L(U<1)),

4
Ut — %U" + ;U@) + gAtL(U@)):

which has a CFL coefficient of 1 as well. The optimality of this scheme was later
proved by Gottlieb and Shu [6]. This scheme is commonly called the Third-Order
TVD Runge-Kutta scheme, but we will simply refer to it as SSP(3,3).

To achieve fourth order, Shu and Osher provide a four-stage method that contains
two negative coefficients f; [18]. A slightly improved scheme (but also containing
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two negative coefficients ;) was proposed by Gottlieb and Shu [6]

v =yn + %AtL(U”),

649 10890423 . - 951 5000
n_ AtL el O
16000~ 25193600 XU+ 15007t 773

53989 102261 - 4806213
(3) — n_ AL (U™ 4 2006213 1)
U = 25000007~ 3000000°U") * 200000007
5121 23619 7873
— 2 AtE(UW) 4+ Sy 2 AL
20000 U + 550007 10000 w®),

1 1 6127
_ Lo n (1) (1)
U™+ G AIL(UT) + 30000U + AtL(U )

7873 1
T8 ey Lye 4 Lan o,
so0000 T3V At

AtL(U“))

U’n+1

This scheme has a CFL coefficient of 0.936 and an effective CFL coefficient of 0.936 x
4/6 = 0.624 because 6 function evaluations are required per step. Because this seems
to be the best four-stage, order-four SSPRK scheme known, we will refer to it as
SSP(4**/4), with the two asterisks meant to convey two negative coeflicients ;. Got-
tlieb and Shu [6] subsequently proved that no four-stage, order-four SSPRK scheme
exists with positive coefficients.

Gottlieb and Shu [6] have also carried out an investigation of SSP time discretiza-
tion methods for generalized Runge-Kutta methods (also known as pseudo-Runge-
Kutta methods or hybrid methods [8]®). They report that they were unable to find
effective SSP methods in this wider class of methods. It is from this point that we
start our derivations of improved SSPRK schemes where generally s > p. The details
of these derivations are provided in the next section.

3. Optimal SSP Schemes. We now turn to the task of finding optimal SSPRK
schemes. To begin, we seek to optimize an s-stage, order-p SSPRK scheme by max-
imizing its CFL coefficient according to Theorem 2.2. That is, we seek the global
maximum of the nonlinear programming problem

. Qg
3.1 max min ,
( ) (@ik,Bir) Bik

where ay, Bk, k =0,1,...,i—1, i =1,2,...,s are real and non-negative. The case
;i = Bir = 0 is defined as NaN in the sense that it is not included in the minimization
process if it occurs. Besides the non-negativity constraints on the variables a;x, Bik,
the objective function (3.1) is subject to the constraints

i—1
(3.2) aw=1, i=12..,s,
o 1
(3.3) ijcbj(t)zm, teT, q=12,...,p.

Here, the functions ®;(¢) are nonlinear constraints that are polynomial in a;k, B
and that correspond to the order conditions for a Runge-Kutta method to be of order

3All of these methods are also special cases of methods known as general linear methods.
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p (see e.g., [8]); i.e., Ty stands for the set of all rooted trees of order equal to ¢g. The
number of constraints represented by the Runge-Kutta order conditions is equal to

P
Z card(Ty),
g=1

where card(T}) is the cardinality of T;. Also, we use the notation b; in the usual
sense of the Butcher array representation of a Runge-Kutta method; again this would
be a polynomial function of the coefficients a;; and S;. It can be expected that the
particular choice of coefficients a;y,, B that maximizes the quantity (2.2) for a given
Runge-Kutta method will be naturally produced by the solution to this nonlinear
programming problem; hence the result will be a sharp estimate of the CFL coefficient.

In this form, the optimization problem does not lend itself easily to numerical
solution. The difficulty due to the high degree of nonlinearity in the constraints is
compounded by the following two considerations. First, the objective function (3.1) is
non-smooth and so an optimization strategy that uses gradient information will have
difficulty obtaining reliable numerical estimates of the derivatives. Second, the min(-)
function can be quite insensitive to its arguments. This also contributes to the poor
performance of optimization software on this problem. We found that even optimizers
that do not rely on gradient information were unable to consistently converge to the
same optimum with this formulation.

The performance of optimization software on this problem is greatly enhanced
through the following standard reformulation. By introducing a dummy variable z,
the nonlinear programming problem can be reformulated as

(3.4a) max z,
(ik,Bik)

subject to
(3.4c) Bik > 0,

i—1
(3.4d) a=1, i=12,..s

k=0

° 1
(3.4¢) > bi®i(t)=—, teT, ¢=12,...p,
= v(t)

(34f) Ckik—Z,BikSO, kZO,l,...,i—l,i:1,2,...,8.

It is easy to see that the dummy variable z corresponds to the CFL coefficient. This
reformulation is a standard technique that is widely used in the context of linear
programming problems with objective functions of the form max(-) or min(-) (see
e.g., [2]). It is also a common reformulation of the so-called feasibility problem, where
any feasible solution to a set of equality or inequality constraints is desired (e.g., as
in the first phase of a two-phase simplex algorithm for linear programming [3]).

The reformulated problem (3.4) was solved directly using the fmincon function
from Matlab’s Optimization Toolbox for s = 1,2,3,4,5 and p = 1,2,3,4 and the
results shown below. Table 3.1 shows the optimal values for the CFL coefficients for
given pairs (s,p). The * in the (4,4) position denotes the fact that no such SSPRK
method exists with all coefficients a;,, B positive.
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s=1|s=2|s=3|s=4|s=5

2.65
1.51

I
=W =

BV IRV

TABLE 3.1
Optimal CFL coefficients for s-stage, order-p SSPRK methods.

Table 3.2 gives the theoretical efficiencies of these new schemes relative to the
ones where s = p. We note that there is no efficiency gain for the first-order methods.
For example, although the CFL coefficient of the (2,1) method is twice that of that
(1,1) method (forward Euler), it is also twice as much work. The percentages quoted
refer to the theoretical increases in allowable step size of the new methods relative to
the methods with s = p. For example, the (3,2) method has twice the allowable step
size compared to the (2,2) method (the modified Euler method), but it requires 3/2
times more work. We thus report that the net effect is a relative increase in step size
of ((2/1)/(3/2) — 1) x 100% = 33%. Equivalently, assuming the CFL coefficient to be
the exact bound on the time step, the new (3,2) scheme can produce a comparable
second-order-accurate answer with only 75% of the computational effort as the (2, 2)
scheme.

s=2|s5=3|s=4|s=5

p=2 33% | 50% | 60%

p=3 50% | 59%

p=4 94%
TABLE 3.2

Theoretical efficiency improvement over standard pth order SSPRK schemes.

We draw particular attention to the efficiency of the (5,4) scheme in Table 3.2.
As mentioned earlier, a (4,4) SSPRK scheme does not exist for any positive CFL
coefficient. The figure of 94% is measured relative to the (4**,4) scheme reported
in [6] as the best scheme of order 4 that could be found. Recall that this scheme
had a CFL coefficient of 0.936 and effectively used 6 stages because it involved two
coefficients f;; that are negative (hence leading to a 50% increase of the storage
requirement per step and the overhead of coding L(-)). The new (5,4) scheme thus
compares very favourably.

The first few optimal SSPRK schemes of orders 1 and 2 are given in Tables 3.3
and 3.4. Here we give the schemes in terms of the coefficients a;j, Bix; the Butcher
form of these schemes in given in Appendix B. It is interesting to note that Gerisch
and Weiner have independently proposed the SSP(3,2) scheme; see [4] for details.

From Tables 3.1, 3.3, and 3.4, we can conjecture the form of the optimal SSPRK
methods with s stages and orders 1 and 2; namely, the optimal SSPRK method with
s stages and order 1 has CFL coefficient s; and the optimal SSPRK method with
s stages and order 2 has CFL coefficient s — 1. Shu [17] has given a proof of the
first-order result and Gottlieb and Shu [6] have given a proof of the second-order
result for s = 2. We provide a new proof of the first-order result below as well as a



NEW OPTIMAL SSPRK TIME DISCRETIZATION METHODS 9

Stages g Bik CFL coefficient
1 1 1 1
1 1
2 2 N 2
0 1 0 5
1 3
3 0 1 0 % 3
0 0 1 0 0 %
TABLE 3.3

The first few optimal SSPRK schemes of order 1.

Stages aux

=
=

CFL coefficient

—

2 1

M1
o=

[
W=

B O O W O N
[es)
SIIN)
o o wRlo owv|l o =
O Wi
w

o Wi

1
0 0 0 O
TABLE 3.4

The first few optimal SSPRK schemes of order 2.

o
N

proof of the second-order result for arbitrary s. These low-order methods with large
CFL coefficients are useful when seeking a time-independent (steady-state) solution
of (1.1), given that in such problems the accuracy considerations in time are typically
less critical than those in space [17].

THEOREM 3.1. For s = 1,2,3,..., the optimal s-stage SSPRK method of order
1 with Bi, > 0 has CFL coefficient s and can be represented in the form

1 k=i—1, Lop=i—1, ,
Qi = . ) Bik =19 ° ) , i=1,2,...,s.
0 otherwise. 0 otherwise.

Before giving the proof of Theorem 3.1, we introduce the following notation and
give a useful Lemma. We find it convenient to write the general s-stage explicit
Runge-Kutta method in the following form (cf. [6]):

(3.5a) v =un,
i—1

(3.5b) UD =U® 4 ALY e L(UR), i=1,2,...,s,
k=0

(3.5¢) Uttt =),
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The coefficients c;;, are related to the coefficients a;g, B;x recursively by

i—1
(3.6) Cik =Y ijcjk+ Bir.
i=h+1

It is also easy to see that the coefficients ¢;;, are related to the Butcher array quantities
ik, by by

Qi = Ci—1,k—1, k:1,2,...,i—1, 7::1,2,...,8—1,

bk:Cs’kfl, k:1,2,...,s.

LEMMA 3.2. If a method of the form (2.1) with a;, Bix > 0 has a CFL coefficient
c>m>0,then0<cy <= forallk=0,1,...,i—1,i=1,2,...,s.
Proof. From Theorem 2.2, if ¢ > m > 0, then ay, > mfB;, or equivalently 5; < % Qi
for all ¢, k such that a;; # 0.

Now,

i—1
ag > 0, Zaikzl, 1=1,2,...,s, = ai;<1
k=0

for all 4, k. Hence, B < % for all 4, k. In particular, c19 = 10 < % for any valid
SSPRK method.

We now proceed by induction on stage ¢ of an s-stage method. Assume ¢;; < %
forj=0,1,....4—1;1=1,2,...,¢. (We have just shown that this result holds for
¢ =1.) Now consider stage (+1) of a valid SSPRK method; i.e., consider coefficients
coq1,r for k=0,1,...,¢ with

4
Z opqr,r = 1.
k=0

Then using (3.6),

¢
Co41,0 = Z 011,5Ck0 + Beti1,0
k=1
¢
<L S apipt -
— R e TARR
m + m +

k=1

1

m
Similar arguments can be used to show ¢;41,; < + for j = 1,2,...,¢. The Lemma
now follows by induction. [ |

Proof of Theorem 3.1. By contradiction, suppose there exists an s-stage, order-1
SSPRK method with CFL coefficient ¢ > s. Because the method is order 1, we have

(3.7) > e =1
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But from Lemma 3.2, we have

1
cik < —, E=0,1,...,i—1, i=1,2,...,s.
S
Thus,
s—1 s—1 1
SRS SLEE
k=0 k=0
contradicting (3.7). Thus, no s-stage, order-1 SSPRK method can exist with CFL
coefficient ¢ > s. Because the SSPRK methods proposed in Theorem 3.1 have ¢ = s,
they must be optimal representations. [ |

THEOREM 3.3. For s = 2,3,4,..., the optimal s-stage SSPRK method of order
2 with B, > 0 has CFL coefficient s — 1 and can be represented in the form

1 k:_la L k:_la .
aik:{ ! , BikZ{ ! ’ , i=1,2,...,s—1.

o
0 otherwise. 0 otherwise.

L g=o,
3_1 L k=s-1, .
Qi = 5 k=s—-1 |, ,Bik: S y 1 =Ss.

) otherwise.
0 otherwise.

Proof. By contradiction, suppose there exists an s-stage, order-2 SSPRK method with
CFL coefficient ¢ > s — 1. Because it is order 2, the coefficients of the method must
satisfy (3.7) and

s—1 i—1 1
(38) Z Csi Zcik = 5 .

i=1 k=0
Also, using Lemma 3.2 with ¢ > s — 1 implies that

1
(3.9) cik<—1, k=0,1,...,i—1, i=1,2,...,s
5 —

Using (3.9) in (3.8) for k=10,1,...,i—1, i=1,2,...,s — 1 leads to

T el

: s_1 si 2 )

=1
and using this result in (3.7) yields

sf s—k-1 1
s—1 *F>a-
k=0
Thus,
1 S 2s—k-1
2 s—1 o
k=0
s—2 s—1
s—k-—1
= Te_1 Z agiCik + Bsk

k=0 j=k+1
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Now we substitute recursively for ¢;j using (3.6) in the right-hand side of the above
equation and (3.8), and recalling that a;, > (s—1)8y and g > 0for k=0,1,...,i—

1,i=1,2,...,s, we can use (3.8) to write
1 1 = - 3—3—1
§>§ Z: z§168l6132]+2 s—1 Bsi-

This now contradicts the fact that 3; > 0 for all kK =0,1,...,: —1,¢=1,2,...,s
Thus, no s-stage, order-2 SSPRK method can have CFL coefficient ¢ > s — 1. The
proof is now completed by noting that because the schemes proposed have ¢ = s — 1,
they must be optimal representations. [ |

In Tables A.1-A.2 in Appendix A, we give results for the coefficients of the optimal
schemes of order p = 3, 4 in terms of their numerical values up to double precision.

A proof of optimality for the SSP(4,3) scheme follows easily from a result in [16].
In [16] it is proven that the optimal CFL coefficient of an s-stage SSPRK method of
order p applied to a linear, constant-coefficient problem U=LUiss —p+1. Thus if
a nonlinear scheme can attain this optimal bound, then it must also be optimal. It is
easy to see that SSP(4,3) is such a scheme.

We do not offer formal proofs of optimality in the remaining cases; however, these
are the results of extensive numerical searches.

Finally, we describe our results for optimal low-storage SSPRK schemes. There
are computational problems for which memory management considerations are at least
as important as stability considerations when choosing a numerical time discretization
method, e.g., direct numerical simulation of Navier-Stokes equations requiring high
spatial resolution in three dimensions. In such cases, s-stage explicit Runge-Kutta
methods that use less than the usual s units of storage are very desirable (see e.g.,
[20]). We focus our discussion on SSPRK schemes that require only two units of
storage per step®, although more general methods requiring more storage per step are
possible. These schemes take the form

(3.10a) dUW = A;dUCY 4+ AtLU0Y),
(3.10b) UD =UD 4 BdutY, =12,

where U = " Ut = U®) and A; = 0. Again, we note that there is a relation
between the coefficients A;, B; and the coefficients a;, (i or equivalently the usual
quantities in the Butcher array. We denote the general s-stage, order-p low-storage
SSPRK scheme simply by LS(s,p).

We have solved the corresponding nonlinear programming problems to optimize
the CFL coefficient for the low-storage schemes defined by (3.10). The results for the
coefficients A;, B; are given in Tables 3.5-3.7 for up to 5 stages and order 3. Again,
only numerical values of the coefficients are given to double precision. The Butcher
array form of these schemes is given in Appendix C. Of course, a traditional imple-
mentation of any 2-stage scheme must be low-storage in the sense we are considering,
so the optimal low-storage method with s = p = 2 corresponds to the optimal SSPRK
scheme in Table 3.4. We note that the optimal 3-stage, order-3 low-storage method
reported in Table 3.7 agrees with that reported in [6]. We also note that we were not
successful in finding a 5-stage, order-4 scheme in this family, and we strongly suspect
that such a method does not exist.

4We note that if some form of error control is envisaged, perhaps using an embedded [8] SSPRK
scheme, then additional storage for the current solution vector is also required.
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Stages A; B; CFL coefficient
1 0 1 1
2 0 0.25471543653218 1
0.66323286721269  0.44809394647120

3 0 0.26237801705341 1
0.42645094785793  0.20169056000013
0.45339958582027  0.27321697994061

4 0 0.14142439246204
0.42623204099143  0.35397016495696 1
0.38851833123083 0
0.01694135866933  0.34465757966021

5 0 0.03368800719745 1

0.61573074220688
0.24191712486786
0.16549924932085
-0.04239297405834

0.13960527476637
0.22864919232774
0.26079330982391
0.10750824432183

13

TABLE 3.5
The coefficients of the first few optimal low-storage schemes of order 1.

4. Numerical Studies. In this section, we study the numerical behaviour of
our schemes and Shu-Osher SSP-schemes for a few test problems designed to capture
solution features that pose particular difficulties to numerical methods. Experiments
for the classical fourth-order explicit Runge-Kutta method are also included because
this method is commonly used in method-of-lines discretizations of hyperbolic con-
servation laws but is not SSP.

4.1. Test Problems. There are a variety of solution features in computational
fluid dynamics that commonly cause numerical problems. For example, many numer-
ical methods produce significant errors near sonic points (points where the wavespeed
equals zero). Upwind methods in particular are forced to give sonic points special
consideration since the upwind direction changes at sonic points. Shock waves, con-
tact discontinuities, and expansion fans may also lead to a variety of serious problems
including oscillations, overshoots, and smearing that can spread discontinuities over
several cells. In particular, contact discontinuities do not have any physical compres-
sion and thus smearing increases progressively with the number of time steps. Even
when approximating smooth solutions, most numerical methods exhibit obvious flaws.
For example, many stable numerical methods continuously erode the solution, leading
to amplitude and dissipation errors [13].

To investigate the behavior of our time-stepping schemes, we consider three of
Laney’s five test problems [13]. These three problems involve all of the important
flow features identified above: shocks, contacts, expansion fans, sonic points, and
smooth solutions. Similar to Laney, we focus on the behaviour of the numerical
scheme for interior regions rather than boundaries and impose periodic boundary
conditions on the domain [—1,1]. It is known that sometimes a conventional (and
intuitive!) treatment of the boundary data (especially in the case of inflow boundary
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Stages A; B; CFL coefficient

2 0 1 1

1 %

3 0 0.79609964254616 1
-0.86514937424574 0.47921739051941
-0.01459406292961 0.13955204452449

4 0 0.08820909208788

0.34143758512319  0.62773790223092 1
-0.80189834090053  0.43908735985479
-0.26868602239001 0.10090483677631

5 0 0.24064789292000 1

-0.35363900948812
0.23144682054640
0.30287923513739

-0.90122396243589

0.28813102587031
0.15490366543216
0.33623843526263
0.27101878032131

TABLE 3.6

The coefficients of the first few optimal low-storage schemes of order 2.

Stages A;

B;

CFL coefficient

3 0
-2.91549398859489
0.00000000151682

0.92457411523577
0.28771294148749
0.62653829645172

0.32234930738853

4 0
-4.94661981618529
0.00000000050902
-0.15127914578976

1.03216665875130
0.18793881263711
0.15215751854315
0.65675174856653

0.52841816101829

5 0
-2.60810978953486
-0.08977353434746
-0.60081019321053
-0.72939715170280

0.67892607116139
0.20654657933371
0.27959340290485
0.31738259840613
0.30319904778284

TABLE 3.7

The coefficients of the first few optimal low-storage schemes of order 3.

conditions) within the stages of a Runge-Kutta method can lead to a deterioration
in the overall accuracy of the integration. We refer to [1] and references therein for a
discussion of this problem and a method for its resolution. The spatial discretization
and the results of three test cases follow.

4.2. Spatial Discretization. SSPRK schemes are natural candidates for any
method-of-lines discretization involving nonsmooth solutions. Similar to the original
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paper on SSPRK methods [18], we choose finite-difference Shu-Osher methods (ENO)
to spatially discretize the equations. These methods are derived using flux reconstruc-
tion and have a variety of desirable properties. For example, they naturally extend
to an arbitrary order of accuracy in space, and they are independent of the time dis-
cretization, thus allowing experimentation with different time discretization methods.
Moreover, educational codes are also freely available [13, 12], an attribute which is
desirable for standardizing numerical studies. Our simulations are carried out with a
discretization that has the same order of accuracy in Az as the time discretization
accuracy p. We further note that flux splitting is carried out according to

FHU) = S(F0) + 0y o0,
F(U) = S(FU) = oy ,0)

where o7, , = max{[f'(Uj,)],|f'(Ui")[}. For full details on the discretization as
well as code, see [13, 12].

It is noteworthy that high-order, fully TVD spatial discretization schemes are also
available; see Osher and Chakravarthy [15]. In these numerical studies, we choose Shu-
Osher spatial discretization schemes rather than TVD schemes since TVD schemes
only obtain between first- and second-order accuracy at extrema and they have “been
largely superseded by Shu and Osher’s class of high-order ENO methods” [13].

It is also noteworthy that recent variations on Shu-Osher methods such as methods
based on WENO reconstructions (e.g., [14, 11]) also naturally combine with SSPRK
schemes. See [13] for detailed discussions on these and other spatial discretizations
appropriate for hyperbolic conservation laws.

4.3. Test Case 1: Linear advection of a sinusoid. In this test case, the
smooth initial conditions

u(z,0) = —sin(wz)

are evolved to time ¢t = 30 according to the linear advection equation

ou Ou

o T or "

using a constant grid spacing of Az = 1/320. Since this evolution causes the initial
conditions to travel around the periodic domain [—1, 1] exactly 15 times, it is clear
that the exact solution is just u(x,30) = — sin(7x). Test Case 1 effectively illustrates
the evolution of a smooth solution with no sonic points and is useful for verifying
convergence rates for high-order schemes. Moreover, even on completely smooth so-
lutions most numerical methods designed for hyperbolic conservation laws exhibit
obvious flaws [13]. This test case is quite helpful for understanding phase and ampli-
tude errors but should not be used to study dispersion because only one frequency
is present in the exact solution. It is also informative to contrast these results with
those derived for problems involving shocks and other discontinuities.

To quantify the accuracy of the computed solution, we use the logarithm of the
[y errors, i.e.,

N
1
log,, (N > U = ula, 30)|> ,
i=1
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F1G. 4.1. Iy errors as a function of the effective CFL number. (a) Second-order schemes (b)
Third-order schemes (c) Fourth-order schemes (d) Low-storage schemes.

where N is the number of grid points and z; is the i*" grid node. A plot of the error is
given in Figure 4.1. To ensure a fair comparison for methods with a different number
of stages, the error is plotted as a function of the effective CFL number® rather than
the CFL number itself. This implies that for a particular plot, the total number of
function evaluations at a particular abscissa value will be the same for each scheme.
We start calculating errors for an effective CFL number of 0.6 and continue until the
numerical method is so unstable that a value of NaN is returned; i.e., the scheme has
become completely unstable.

In this smooth test example, the new second-order schemes give improved stability
and accuracy over the original SSP(2,2). Also, SSP(5,3) gives improved stability
over SSP(3,3) and SSP(4,3). Calculations for low-storage schemes show that LS(5,3)
outperforms both LS(4,3) and LS(3,3). (For clarity, we use arrows to indicate the

5Similar to the definition of effective CFL coefficient, the effective CFL number of an SSPRK

method of order p is ﬁ—; % where s* is the minimum number of stages to theoretically achieve order

p, and s is the number of stages required for one step of the method.



NEW OPTIMAL SSPRK TIME DISCRETIZATION METHODS 17

exact points at which SSP(3,3) and LS(3,3) go completely unstable.)

Based on these plots, we see that the second-order, third-order, and low-storage
schemes all give stability restrictions that are within 20% of one another. This con-
trasts sharply with the results for fourth-order schemes (plot (c)). Here the new
SSP(5,4) scheme gives more than a 40% improvement in the stability time-step re-
striction over the original SSP(4** 4). Moreover, it produces a marked reduction in
the error, signifying a smaller error constant for this problem. It is noteworthy that in
this case the classical fourth-order Runge-Kutta scheme outperforms even SSP(5,4):
On smooth problems, schemes based purely on a linear stability analysis are expected
to perform well. SSP schemes are designed to outperform on problems involving dis-
continuities in the solution or its derivatives, so in this case there is no reason to
expect that schemes derived using nonlinear stability analysis will necessarily outper-
form classical schemes based on linear stability analysis.

4.4. Test Case 2: Linear advection of a square wave. In this test case, the
discontinuous initial conditions

(z,0) 1 for |z| < 1/3,
u(z,0) =
0 for1/3<|z| <1,

are evolved to time t = 4 according to the linear advection equation

Ou Ou 0
ot + or

using a constant grid spacing of Az = 1/320. Since this evolution causes the initial
conditions to travel around the periodic domain [—1, 1] exactly 2 times, it is clear that
the exact solution at the final time is just u(z,4) = u(z,0). Test Case 2 exhibits two
jump discontinuities in the solution that correspond to contact discontinuities. This
test case nicely illustrates progressive contact smearing and dispersion.

The log of the I; errors as a function of the effective CFL number are plotted in
Figure 4.2. Based on these plots, it is immediately clear that a material improvement
in both stability and accuracy are obtained using our new schemes.

For example, plot (a) shows that SSP(3,2) and SSP(4,2) allow about a 20 — 30%
improvement in the time-step restriction over the original SSP(2,2). It is also clear
that the new schemes also give a substantial improvement in stability and accuracy in
the third-order case (b). Here we find that the optimal SSP(5,3) scheme gives about
a 40% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed. SSP(5,4)
gives more than a 60% improvement in the stability time-step restriction and only
requires half the number of function evaluations to achieve an error of 101>, More-
over, SSP(5,4) is clearly superior to the classical fourth-order Runge-Kutta scheme,
with more than a 40% improvement in the observed time-step restriction. As con-
jectured, the best SSP-schemes outperform classical (but non-SSP) schemes when
discontinuities in the solution arise.

Out of the low-storage schemes (plot (d)), the new 1.S(4,3) gives the best perfor-
mance. It is interesting that the best-performing scheme LS(4,3) requires one-third
less storage and is more CPU-efficient than the standard SSP(3,3) in this test example.
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log10(error)
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Effective CFL number Effective CFL number

F1G. 4.2. [y errors as a function of the effective CFL number. (a) Second-order schemes (b)
Third-order schemes (c) Fourth-order schemes (d) Low-storage schemes.

4.5. Test Case 3: Evolution of a square wave by Burgers’ equation. In
this test case, the discontinuous initial conditions

(2,0) 1 for |z| < 1/3,
u(z,0) =
-1 for1/3 < |z| <1,

are evolved to time t = 0.3 according to Burgers’ equation

ou 0 (1 ,\
E+%<§“>_O

using a constant grid spacing of Az = 1/320. In this example, the jump at © = —1/3
creates a simple centered expansion fan and the jump at z = 1/3 creates a steady
shock. Until the shock and expansion fan intersect (at time ¢ = 2/3), the exact
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solution is

] for —oco <z < by,
(e ) = _1+2lf211;)11 for by < T < bo,
1 for by < x < bshock,
-1 for bspock < x < 00,

where by = —1/3 —t, by = —1/3 + t and bgpeer. = 1/3 [13]. Test Case 3 is partic-
ularly interesting because it illustrates the behaviors near sonic points (v = 0) that
correspond to an expansion fan and a compressive shock.

The log of the Iy errors as a function of the effective CFL number are plotted
in Figure 4.3. Based on these plots, it is clear that a marked improvement in both
stability and accuracy are obtained in the second-, third-, and fourth-order cases using
our new schemes.

Once again, plot (a) shows that SSP(3,2) and SSP(4,2) show about a 20-30%
improvement in the time-step restriction over the original SSP(2,2). It is also clear
that the new schemes also give a substantial improvement in stability and accuracy in
the third-order case (b). Here we find that the optimal SSP(5,3) scheme gives about
a 20% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed than in Test
Case 2. SSP(5,4) gives an 80% improvement in the stability time-step restriction
and only requires one-third the number of function evaluations to achieve an error
of 1072, Moreover, SSP(5,4) is clearly superior to the classical fourth-order Runge-
Kutta scheme, with more than a 60% improvement in the observed time-step restric-
tion. Similar to the previous example, SSP(5,4) outperforms classical (but non-SSP)
schemes when discontinuities in the solution arise.

Out of the low-storage schemes (plot (d)), LS(3,3) and the new LS(4,3) give the
best performance. In this test case, the best low-storage schemes are nearly as CPU-
efficient as SSP(3,3) but require one-third less storage.

5. Summary and Future Work. We have presented new optimal SSPRK time
discretization methods of orders 1 through 4 and stages 1 through 5. We find that,
by allowing the number of stages to differ from the order of the method, it is possible
to derive schemes with better effective CFL coefficients than those that are most
commonly used. We have also performed a comparison of the new methods with
Runge-Kutta methods (both SSP and non-SSP) most commonly used in practice
on three problems involving scalar conservation laws. Our new methods compare
favourably in terms of computational efficiency per time step, especially when the
solution exhibits discontinuous behaviour. The improvements are the greatest for the
new fourth-order scheme with 5 stages (SSP(5,4)), where the allowable time step is
significantly greater than the Shu-Osher fourth-order scheme and the classical fourth-
order explicit Runge-Kutta scheme.

We also give results of a similar treatment of low-storage SSPRK schemes, where
again we find significant improvements over the schemes most commonly used. The
results are for orders 1 through 3 and stages 1 through 5. We were unable to find a
low-storage scheme of order 4 having only 5 stages.

We have already examined the possibility of finding even more efficient SSPRK
schemes by lifting the positivity constraint on the coefficients 3;;. Not surprisingly,
improvements in the raw CFL coefficient are possible; however, the reduction in the



20 R.J. SPITERI AND S.J. RUUTH

-2 -2
21t 21t (b)
221 2271
5 -23} 5 23} ®3)
5 () (4,3)
S 241 S 247
225} g-25¢
-2.61 261 (5,3)
2.7t 2.7t
0.5 1 15 0.5 1 1.5
Effective CFL number Effective CFL number
=27 =27
-2.1 (C) 2.1} (d)
ool (@ 4) ool LS(53)  LS@3.3)
5 -23} 5 -23}
@ @
§ 241 § 241
-25¢ Q-25¢ LS(4,3)
2 (5.4) =2
26} -2.6}
2.7t M 2.7t
_Classical ) ) ) ,
0.6 0.8 1 1.2 1.4 1.6 0.5 1 1.5
Effective CFL number Effective CFL number

F1G. 4.3. [ errors as a function of the effective CFL number. (a) Second-order schemes (b)
Third-order schemes (c) Fourth-order schemes (d) Low-storage schemes.

effective CFL coefficient necessitated by the introduction of L(-) whenever $;; < 0
causes these methods to be uncompetitive.

We are currently extending our investigation of optimal SSPRK methods to meth-
ods having more than 5 stages and to orders 4 and 5. This work includes the study of
low-storage SSPRK methods of order 4. We have also derived families of embedded
SSPRK schemes for local error estimation and step-size control. We report on these
findings elsewhere.

6. Acknowledgements. The authors would like to express their thanks to J.
Borwein and W. Sutherland for helpful discussions.

Appendix A. Optimal («;, Bir) for p =3, 4. Tables A.1-A.2 respectively
give the optimal SSPRK methods of orders 3 and 4 and up to 5 stages in the repre-
sentation (2.1).

Appendix B. Butcher array forms of SSPRK schemes. The following are
the Butcher array representations of the optimal SSPRK schemes given in this paper.
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TABLE A.1
The first few optimal SSPRK schemes of order 3.
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TABLE A.2
The coefficients of the optimal SSPRK (5,4) scheme.
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Order 3:
00 O O O
00 0 O
1 1
1100 22020
11 L 0 o0
L1 1 2 2
2 |4 4 111 1 1
1 1 2 2 |6 6 6
6 6 3 1 1 1 1
6 6 6 2

o] 0 0 0 0 0
0.37726891511710 0.37726891511710 0 0 0 0
0.75453783023419 0.37726891511710 0.37726891511710 0 0 0
0.49056882269314 0.16352294089771 0.16352294089771 0.16352294089771 0 0
0.78784303014311 0.14904059394856 0.14831273384724 0.14831273384724 0.34217696850008 0

0.19707596384481 0.11780316509765 0.11709725193772 0.27015874934251 0.29786487010104
Order 4:

0 0 0 0 0 0
0.39175222700392 0.39175222700392 0 0 0 0
0.58607968896779 0.21766909633821 0.36841059262959 0 0 0
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738 0 0
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237 0

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395

Appendix C. Butcher array forms of LS schemes. The optimal low-storage
SSPRK schemes of order 1 and order 2 occur when s = p and have already been given
both in terms of representation (2.1) and Butcher arrays. Here we provide the Butcher

array representation of the third-order schemes presented in Table 3.7.

Order 3:
0 0 0 0
0.92457411523577 | 0.92457411523577 0 0
0.37346170537554 | 0.08574876388805 0.28771294148749 0

0.08574876111733  0.28771294243783 0.62653829645172

0 0 0 0 0
1.03216665875130 | 1.03216665875130 0 0 0
0.29044361656735 | 0.10250480393024 0.18793881263711 0 0
0.44260113480482 | 0.10250480354712 0.18793881271456 0.15215751854315 0

0.10250480379728

0.18793881266399

0.05280467502407

0.65675174856653

0 0 0 0 0 0
0.67892607116139 0.67892607116139 0 0 0 0
0.34677649493991 0.14022991560621 0.20654657933371 0 0 0

0.18144649137471 0.27959340290485 0 0

0.66673359500982
0.76590087429032

0.20569370073026
0.16104646283838

0.19856511041100

0.08890670263481

0.31738259840613

0

0.19215670424132

0.18663683901393

0.22177739201759

0.09623007655432

0.30319904778284
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