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Abstract

In this article, we present a diffusion-generated approach for
evolving volume-preserving motion by mean curvature. Our algo-
rithm alternately diffuses and sharpens characteristic functions to
produce a normal velocity which equals the mean curvature minus
the average mean curvature. This simple algorithm naturally treats
topological mergings and breakings and can be made very fast even
when the volume constraint is enforced to double precision (or more).
Two dimensional numerical studies are provided to demonstrate the
convergence of the method for smooth and nonsmooth problems.
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1 Introduction

There are many phenomena in which sharp interfaces form, persist and
propagate. Modeling these processes often leads to equations of motion
for a surface moving with a normal speed that depends on the surface
geometry.

Motion by mean curvature is one of the fundamental models for inter-
face motion. If we consider a collection of disjoint surfaces I';, then under
mean curvature motion they will shrink to enclose zero volume in finite
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time. However, if the normal velocity is modified from the mean curva-
ture k to kK — Kk, where k, is the average mean curvature!, then the total
volume enclosed by the surfaces remains constant. This volume-preserving
mean curvature motion arises physically as a limit of a nonlocal model
for binary alloys [2, 16]. Note that this motion is closely related to the
general phenomena of “Ostwald ripening” (or “survival of the fattest”),
which is of general interest in statistical physics, and provides a model for
the dissolution-precipitation dynamics of precipitate crystals suspended in
a saturated solution. Furthermore, the model has importance within the
mathematical theory of curvature flows, as the simplest model problem
with nontrivial limiting behavior. To avoid ambiguity with flows that pre-
serve surface area and interface length we follow the usual convention of
referring to 2D motions of the type v, = kK — kK, as volume-preserving rather
than area-preserving.

Due to the theoretical and practical interest in this underlying flow, an
interesting variety of computational techniques have been brought to bear
on volume-preserving motion by mean curvature.

Front tracking methods [3] for volume-preserving mean curvature flow
explicitly approximate the motion of the interface rather than a level set
of some higher dimensional function. These methods are especially well-
suited for curves in two dimensions that never cross but are rather difficult
to implement whenever complicated topological changes occur, especially
in more than two dimensions. We further note that front tracking methods
explicitly calculate k and k., which can be involved in three dimensions.

Phase field methods, on the other hand, automatically treat changes
in topology. They have the advantage that they do not need to calculate
K or Kq. Unfortunately these methods can be too expensive for practi-
cal computation [12] because they represent the interface as an internal
layer and thus require an extremely fine mesh (at least locally) to resolve
this layer. We note that a variety of advances have been made for cer-
tain curvature-dependent flows (including volume-preserving flow) by car-
rying out a careful dynamic mesh refinement [13]. However, these gains
in efficiency naturally come at the price of additional algorithmic detail,
especially in three dimensions.

It is also noteworthy that level set methods [14] have been used to evolve
interfaces according to v, = K—k, [15, 24]. To treat volume-preserving mo-
tion by mean curvature these methods explicitly calculate x and k,. These

In 3D denote surface i by T'; and let |T'| be the total surface area. Similarly, in 2D
denote curve i by I'; and let |T'| be the total curve length. The average mean curvature
is defined as

T2,
Ka = — KdA.
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calculations are reasonably straightforward on a uniform grid [15]. Level
set methods are efficient and naturally treat topological mergers and pinch-
off, but have the disadvantage that they sometimes suffer from significant
volume loss in poorly resolved regions of the flow. Unfortunately, volume-
preserving flow is quite naturally under-resolved since the volume of small
phase regions should be accounted for as they (very rapidly) disappear.
See also [4, 23] for some other interesting examples of volume-conserving
motions (but with different surface dynamics) that have been treated using
level set methods.

In this paper, we propose a novel algorithm for treating volume-preserving
mean curvature flow which is based on the diffusion-generated motion al-
gorithm originally proposed by Merriman, Bence and Osher [11, 12]. Our
simple approach automatically evolves surfaces with a normal speed equal
to k—k, without ever directly computing the mean curvature or the average
mean curvature. Remarkably, this nonlocal motion can be produced merely
by following the level set that preserves volumes in the diffusion-generated
framework. Topological merger and breakage are automatically handled
without any special algorithmic procedures. Accurate, efficient discretiza-
tions are possible using adaptive resolution and fast Fourier transform tech-
niques [19]. Finally, the algorithm has the advantage that it inexpensively
enforces the volume constraint to double precision (or more, if need be).
We remark that some of the basic ideas in this paper first appeared as part
of an earlier dissertation. See [17] for details.

The outline of the paper follows. In Section 2 we review the diffusion-
generated motion by mean curvature algorithm [11, 12] and show how a
simple modification gives a volume-preserving flow. Efficient discretiza-
tions are also discussed. Section 3 validates our approach with a number
of numerical tests. Finally, Section 4 gives a variety of extensions and
directions for future work.

2 Diffusion-Generated Motion

A semi-discrete algorithm for following interfaces propagating with a nor-
mal velocity equal to the mean curvature was introduced by Merriman,
Bence and Osher [11, 12]. This algorithm has been extended to motions
which also involve a curvature-independent component [11, 10]. In this
section we review these basic methods and use them as building blocks
for deriving volume-preserving motion by mean curvature. Fast spatial
discretizations are also discussed.



2.1 Motion by Mean Curvature

The diffusion-generated motion algorithm introduced in [11, 12] is a sur-
prisingly simple procedure for evolving the boundary of a region with a
normal speed equal to mean curvature. If the initial region has character-
istic function x, the updated region at a time At is

{x:x*K(x)>%}

where K is a Gaussian of width /At [8, 20]. “Diffusion-generated” refers
to the fact that convolution with the Gaussian kernel can be realized by
solving the heat equation for a time At, with y as initial data. Using this
observation we obtain the diffusion-generated motion by mean curvature
algorithm:

ALGORITHM DGM
GIVEN: An initial region R.

BEGIN
(1) Initialize: Set x equal to the characteristic function for the region R.
(2) Repeat for all steps:
(a) Diffuse: Starting from , evolve y for a time At
according to y; = V2x.
1 ify>1/2
(b) Sharpen: = { 0 otherwis/e
END

The location of the interface is given by the 1/2 level set of .

Diffusion causes a curvature-dependent blurring of the set boundary and
a formal analysis of the diffusion equation [11, 10, 12] shows this should
result in motion by mean curvature as the time step goes to zero. In the
special case of smooth interfaces, formal asymptotics show a first order con-
vergence rate in the position of the front [18]. Moreover, rigorous proofs
demonstrate that this simple algorithm converges to motion by mean cur-
vature in rather general settings involving topological change [5, 1, 9]. We
further note that diffusion-generated motion could serve as a definition
of curvature motion in extremely general settings, since it applies to the
boundary of any measurable set, for which curvature would otherwise have
no meaning.

Diffusion-generated motion has a number of interesting extensions [22,
21]. These include a direct extension to affine motion [10, 18], anisotropic
curvature motion [20, 9] and the motion of multiple junctions [11, 12, 18].
Extensions to achieve interface motions similar to the threshold dynamics
type cellular automata are also available [22]. These methods are based on



continuous convolutions rather than discrete sums and naturally provide
a numerically and analytically tractable link between cellular automata
models and the smooth features of pattern dynamics.

Particularly relevant to the derivation of volume-preserving schemes will
be the the extension to affine motion described below.

2.2 Affine Motion

The extension of the ALGORITHM DGM to a normal velocity which
equals the mean curvature plus a constant (affine motion),

Up =0+ K

is also straightforward. This motion is obtained using the threshold value
of

1 1 JAt
- — —a\/— 1
2 2"V 7 )
instead of the usual value of 1/2 [10].

Interestingly, an expansion of the normal velocity of the front may be
carried out to show that the rate of convergence is first order for smooth
interfaces. See [10, 17, 18] for the relevant details.

2.3 Volume-Preserving Motion

We now provide a simple modification of diffusion-generated motion by
mean curvature which generates the desired volume-preserving flow.

As is clear from the previous section, an approximation to this flow is
possible by thresholding at

1 1 At
5~ 5y = )
rather than the usual value of 1/2. By the nature of the flow, this choice
must preserve volume (to leading order). Because there exists a unique
threshold X that preserves volume® it is clear that the desired threshold
value (2) must be . In smooth problems, we expect this approximation
to be first order in At since the threshold value (1) used in this derivation
gives a first order approximation to volume-preserving flow.
Applying this idea to diffusion-generated motion gives a simple algo-
rithm for computing solutions to the nonlocal model. We just make the
following replacements to step 2(b) in the Algorithm DGM:

2The diffused x is smooth, so the volume enclosed by a level set £, V (£) = Volume({% :
X < £}) is an invertible function of £.



e Find the level set that preserves phase volumes; i.e., determine the
value A satisfying V/(A) = Vo where 1} is the initial phase volume.
Solving for A may be accomplished by a variety of line search algo-
rithms. We have found that a particularly fast, simple and reliable
approach is to use secant method with initial guesses coming from
the previous search®. Moreover, volume calculations are trivial when
a Fourier spectral discretization is used since the volume is given by
the leading Fourier coefficient cpo (cooo in 3D).

e Carry out step 2(b) of the Algorithm DGM using the threshold value
A rather than the usual choice of 1/2.

Making these changes gives the algorithm for volume-preserving motion by
mean curvature:

ALGORITHM VP-DGM
GIVEN: An initial region R.

BEGIN
(1) Initialize:
(a) Set x equal to the characteristic function for the region R.
(b) Set Vp equal to the volume of R.
(2) Repeat for all steps:
(a) Diffuse: Starting from , evolve y for a time At
according to y; = V2¥.
(b) Determine the threshold value that preserves the volume of the set:
Le., find a A so that |Volume({Z: ¥ < A}) — Vo| < e.

[ 1 x>
(c) Sharpen: x = { 0 otherwise
END

The location of the interface is given by the X level set of .

2.4 Spatial Discretization

A standard finite difference discretization of diffusion-generated motion
is extremely easy to implement and is suitable for qualitative studies of
certain curvature-dependent flows [11, 12] but has the disadvantages that
it is susceptible to numerical artifacts [12] and is prohibitively expensive
when accurate solutions are sought [19]. Fortunately, much faster results
can be obtained using a simple spectral method on adaptive grids [19].

3The simulations detailed in Section 3 required an average of between 1.0 and 3
secant iterations per step to preserve volume to 13 decimal digits. Note that the fewest
iterations were required when small time steps were applied. This make sense since the
appropriate level X varies little between successive time steps when At is small.



To begin, a method is needed to solve the heat equation,
Xt = V2X

repeatedly over intervals of length At. Following [19], this is accomplished
using a Fourier cosine tensor product. Notice that x is initially discontin-
uous so it will contain a high frequency error from truncating the Fourier
series. However, we only require y after a time At. After a time At,
high frequency error modes have been damped out. Since the problem
is linear, the various modes do not interact. Thus there is never a need
to approximate the high frequency components of x. We remark that the
decay of high frequency modes depends only on the timestep size—it is
independent of the threshold value A. Thus a Fourier approximation is an
excellent choice, because far fewer basis functions are required than might
otherwise be expected.

The thresholding step is also straightforward. Using the usual orthog-
onality conditions, it is easy to show that the Fourier coefficients of the
characteristic function in 2D after thresholding are

i = (2= 60)(2— ) / / cos(miz) cos(mjy) dedy  (3)
R,

where R; = {Z: x(&,t) > A} is the approximation to the phase we are
following and

%:{ 0 ifi#j

1 otherwise

is the usual Kronecker delta function.

To complete the discretization, the integrals (3) must be evaluated.
These are accurately and efficiently treated using adaptive quadrature
methods with unequally spaced fast Fourier transforms. Note that both
of these algorithmic components are reasonably straightforward to imple-
ment: Adaptive quadrature can be carried out using standard quadtree
methods (or octrees in 3D) while unequally spaced FFT packages are avail-
able commercially or can be directly coded from recent journal articles. See
[19] for details.

3 Numerical Experiments

In this section, we examine the numerical convergence rate of volume-
preserving motion by mean curvature for some smooth and nonsmooth
flows. In all cases the volume was preserved to 13 digits. In the smooth



case, we shall compare our results against the exact (analytically derived)
solution while in the nonsmooth simulation our comparisons will be against
a well-resolved front tracking calculation [3].

3.1 A Smooth Test Problem

To test how well the algorithm approximates the volume-preserving flow
Un = K — Kq, we first consider the smooth motion of two circles with initial
radii 0.2 and 0.15. See Figure 1. Using the ALGORITHM VP-DGM, the
area enclosed by the smaller circle after a time ¢ = 0.02 was compared to
the exact answer® of 0.0445079. The results from a number of experiments
are reported in Table I below. These suggest a first order error for this
smoothly varying problem.

3.2 A Nonsmooth Test Problem

To examine the numerical convergence for an initially nonsmooth shape
we consider the evolution of a square under volume-preserving motion by
mean curvature (see Figure 1). Using the ALGORITHM VP-DGM, the
maximum distance of the computed curve to the exact curve was computed
after a time ¢t = 0.0075. The exact curve was taken to be the result from a
tracking algorithm [3] with a very fine time step and spatial discretization.
The results from a number of experiments are reported in Table II below.
In this nonsmooth problem, the observed convergence improves towards
first order as At decreases.

3.3 Topological Change

Examples involving changes in topology are also naturally handled by
the method. To test how well the algorithm approximates the volume-
preserving flow v,, = kK — K., we consider the nonsmooth motion of a circle
and two ellipses shown in Figure 3. Using the ALGORITHM VP-DGM,
the maximum distance of the computed curve to the exact curve was com-
puted after a time ¢ = 0.0125. Similar to the previous example, the exact
curve was taken to be the result from a tracking algorithm [3] with a very
fine time step and spatial discretization. Table III reports on the results
from a number of experiments. Here we observe numerical convergence,
although the convergence rate is unclear.

We remark that qualitative studies for much more complicated initial
conditions are also possible. See, e.g., Figure 4 for a “many-bubble” simu-
lation.

4This exact result was obtained by numerical integration of the coupled ODE for the
cell radii since the curves stay circles as they evolve.



4 Extensions and Directions for Future Work

In this work, we have presented a diffusion-generated approach for evolving
volume-preserving mean curvature flow, v,, = k—k,. Our method naturally
treats topological mergings and breakings and can be made very fast even
when the volume constraint is enforced to double precision. We have carried
out a number of two-dimensional convergence studies to investigate the
numerical convergence of the method and note that the algorithm may be
applied in three dimensions using the discretizations described in [19].

A rather interesting extension of the volume-preserving algorithm is
to the motion of multiple regions or junctions. The original diffusion-
generated motion by mean curvature algorithm [11, 12] was introduced
to evolve (symmetric) junctions of moving surfaces with a normal speed
equal to the mean curvature. It is natural to consider enforcing volume
constraints on the motion (once again by a secant approach) to obtain a
means for finding shapes having the least surface area enclosing prescribed
volumes. A test starting from two connected squares gives the standard
double-bubble shown in Figure 5. A proof that this is the correct minimizer
is given in [6]. (See [7] for the 3D minimizer and [24] for a variety of related
calculations using a variational level set approach.) It is interesting to note
that the junction angles between different surfaces can also be varied in
diffusion-generated motion [18], so minimizations of weighted surface areas
enclosing prescribed volumes may also be considered using this approach.

Another class of extensions arise when the diffusion step is replaced by
a convolution with a nonsymmetric kernel (cf. [20]). Well-defined volume-
preserving algorithms can be obtained in a variety of ways, the most obvious
of which is to sharpen according to the contour that preserves volume. We
have not pursued this extension in any detail but expect that it should
correspond to minimizing some anisotropic surface energy while preserving
volume.

One might also contemplate achieving volume-preserving motion by
mean curvature by combining the ideas of the paper with other methods
for interfacial dynamics, such as cellular automata, phase field or level set
methods. Note that in the level set case an accurate reinitialization step
would be key to the overall success of the algorithm.

We conclude by posing a challenge to the mathematical community.
Although diffusion-generated motion has been the subject of many rigorous
theoretical studies [1, 5, 8, 9] a rigorous treatment of our nonlocal algorithm
has proven elusive. We feel that this simple algorithm would be an excellent
target for a convergence proof.
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Tables

At Error Conv. Rate
0.002 -0.003108 -
0.001 -0.001527 1.03
0.0005 -0.000733 1.06
0.00025 | -0.000358 1.04
0.000125 | -0.000177 1.02

Table I. Errors for the smooth test problem.
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Tables (cont)

At/0.001875 | Error | Conv. Rate
1.0000 0.000613 -
0.5000 0.000382 .68

0.2500 0.000228 75
0.1250 0.000129 .82
0.0625 0.000070 .88

Table II. Errors in the position of the front for the square test problem.
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Tables (cont)

At/1.5625¢ — 05 | Error | Conv. Rate
1.0000 0.0241 -
0.5000 0.0207 219
0.2500 0.0174 .251
0.1250 0.0136 .355
0.0625 0.0105 373

Table III. Errors in the position of the front for the merging test problem.
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Figure Captions

Figure 1: Initial conditions for a smooth test problem. The solution here
remains as two circles and thus the evolution is described by a system of
ODE:s for the radii.

Figure 2: Evolution of a square under volume-preserving motion by mean
curvature.

Figure 3: A merging test problem for the volume-preserving algorithm.

Figure 4: A many-bubble evolution using the volume-preserving algo-
rithm. We take the time step to be At = 0.000003125 in this simulation.

Figure 5: The steady-state double bubble as captured by the method.
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