
Level set equations on surfaces via the Closest Point Method

Colin B. Macdonald∗ and Steven J. Ruuth†

May 30, 2007

Abstract

Level set methods have been used in a great number of applications in R
2 and R

3 and
it is natural to consider extending some of these methods to problems defined on surfaces
embedded in R

3 or higher dimensions. In this paper we consider the treatment of level set
equations on surfaces via a recent technique for solving partial differential equations (PDEs) on
surfaces, the Closest Point Method [RM06]. Our main modification is to introduce a Weighted
Essentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This,
in combination with standard WENO for Hamilton–Jacobi equations, gives high-order results
(up to fifth-order) on a variety of smooth test problems including passive transport, normal flow
and redistancing. The algorithms we propose are straightforward modifications of standard
codes, are carried out in the embedding space in a well-defined band around the surface and
retain the robustness of the level set method with respect to the self-intersection of interfaces.
Numerous examples are provided to illustrate the flexibility of the method with respect to
geometry.

1 Introduction

The level set method [OS88] has been successfully applied to a tremendous variety of problems
involving curve evolution in R

2 or surface evolution in R
3. This curve or surface—the interface—is

represented as the zero contour of a level set function φ. A principal strength of the level set method
comes from its ability to handle changes in topology of the evolving interface, i.e., interfaces break
apart or merge naturally, and without the need for special code or instructions to detect or treat
the shape changes as they occur. A second, and also key, benefit that occurs when using level set
methods is that the discretization of the underlying level set equation (of Hamilton–Jacobi type)
can be carried out using well-known, accurate and reliable discretization techniques, such as the
weighted essentially non-oscillatory (WENO) methods described in [LOC94, JS96, JP00]. Taken
together, these benefits have contributed to a widespread adoption of level set techniques in different
disciplines [OF03, Set99].

∗Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6 Canada
(cbm@sfu.ca). The work of this author was partially supported by a grant from NSERC Canada and a scholar-
ship from the Pacific Institute of Mathematics (PIMS).

†Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6 Canada
(sruuth@sfu.ca). The work of this author was partially supported by a grant from NSERC Canada.

1

Level set methods have primarily been used to treat evolving interfaces in R
2 and R

3. It is natural
to want to evolve level set equations on general domains, to give a way of robustly capturing the
motion of interfaces on curved surfaces. Such an extension would be extremely interesting since it
could open up the possibility of generalizing existing level set applications to curved surfaces. For
example, suppose one wished to segment out objects appearing on a surface. By extending level set
methods to surfaces, we gain the possibility of solving this problem by simply transferring existing
level set methods for segmentation to the case of surfaces. This approach becomes even more
compelling if the algorithms for surface flows end up being based on existing codes for standard
two- and three- dimensional flows. Indeed, we shall see this is the case with the Closest Point
Method.

An interesting method for evolving interfaces on surfaces was proposed by Cheng et al. [CBMO02].
In their approach, a level set representation of the underlying surface was taken, with the evolving
interface being represented by the intersection of two level set functions. The level set evolution
equation for φ made use of standard gradients followed by projections to the surface rather than us-
ing the surface gradients that would otherwise appear in a surface PDE. Thus, the method evolved
a level set PDE in R

3, and, at any time, gave the position of the interface on the surface as the
zero contour of φ on the surface. See [CBMO02] for further details on the method as well as a
fascinating selection of examples using the method.

An alternative way of developing a method to evolve interfaces on surfaces is to start from a
level set equation defined on a surface, e.g., a Hamilton–Jacobi equation of the form

φt + H(t, x, φ,∇Sφ) = 0, (1a)

φ(0, x) = φ0(x), (1b)

or some curvature-dependent generalization of this, and to solve it with some existing strategy for
evolving PDEs on surfaces. For example, one might apply the method of Bertalmı́o et al. [BCOS01]
or Greer [Gre06] to treat the surface PDE. These methods use a level set representation of the
surface and replace surface gradients by standard gradients and projection operators in R

3 to get
an embedding PDE which is defined throughout time and space and agrees with the surface evolution
on the surface. This leads to similar or the same PDEs as those appearing in [CBMO02], and will
therefore be very similar in character to the methods described there.

In this paper, we will evolve the level set equations of Hamilton–Jacobi type (1) according to
the recently proposed Closest Point Method [RM06]. The Closest Point Method has a number of
properties that make it quite attractive for solving level set equations on surfaces. First of all, it takes
the underlying surface representation to be a closest point representation. This allows it to treat
PDEs on surfaces that have boundaries, lack any clearly defined inside/outside or are of arbitrary
codimension. Similar to level set based methods, the method uses an embedding PDE defined in
the embedding space (e.g., R

3). The meaning and use of the embedding PDE is fundamentally
different, however, since it is only valid initially, and therefore requires an extension step to ensure
its accuracy. A desirable property of the Closest Point Method is that it works on sharply defined
bands around the surface of interest without any loss of accuracy whatsoever. Finally, we note
that the method, in its explicit form, leads to embedding PDEs which are simply the PDEs of the
corresponding flow in the embedding space. This last advantage means that with the insertion of
a simple extension step we can reuse highly effective three-dimensional level set codes without any
other modifications to obtain the motion of level sets on surfaces. Note that this paper does not

2

consider curvature-driven flows; such motions have been treated successfully using the Closest Point
Method with a central difference spatial discretization in [RM06].

A crucial step in applying the Closest Point Method to solve level set equations on surfaces is
to design an appropriate extension step. This paper considers a new extension based on a WENO
interpolation which is sixth order in smooth regions and formally fourth order elsewhere. Our
approach has all the practical advantages of the Closest Point Method: flexibility when selecting a
surface, efficiency with respect to banding and extreme simplicity of implementation. We emphasize
that while our new extension procedure will be used here for Hamilton–Jacobi equations, it also
could be valuable for treating much more general PDEs if high-order accuracy is desired but the
PDE or the underlying surface is somewhere nonsmooth or marginally resolved.

The paper unfolds as follows. Section 2 reviews the Closest Point Method, and includes details
on the closest point representation and the method itself. Section 3 gives our new interpolation tech-
nique, a technique inspired by previous WENO methods. This section includes details on situations
where WENO interpolation will be preferred over standard fixed-stencil Lagrange interpolation.
Section 4 provides the numerical experiments. A focus is on numerical convergence, and we carry
out a number of studies that show high-order accurate flows (up to fifth-order) for passive transport,
normal flows, and the reinitialization PDE. A normal flow computation is performed on a non-trivial
triangulated surface, illustrating that the method is in no way restricted to simple surfaces. We
conclude by carrying out a standard level set calculation on a codimension-two hypersurface in 4D,
the Klein bottle. This example highlights the method’s ability to treat interesting surfaces without
any inside/outside property. Finally Section 5 gives the paper’s conclusions, and lists some areas
for future work.

2 The Closest Point Method

The Closest Point Method [RM06] is a general technique for solving partial differential equations
and other processes on surfaces. This section reviews the method and some of its key features.
We begin with a discussion on how the method represents surfaces before describing the algorithm
itself.

2.1 Closest Point Representation of Surfaces

The Closest Point Method for evolving PDEs on surfaces relies on a closest point representation

of the underlying surface. Let the surface be embedded in R
n then we introduce the closest point

operator cp : R
n → R

n such that given a point x, cp(x) is a point on the surface closest in Euclidean
distance to x. If x is in a sufficiently small neighborhood of a smooth surface, then it will have a
unique closest point, however, in general if there are multiple closest points to x, then we define
cp(x) to return an arbitrarily chosen closest point. For example, if the surface is a circle of radius

R centred at the origin embedded in R
2 then cp(〈x, y〉) =

〈
Rx

x2+y2 ,
Ry

x2+y2

〉

provided 〈x, y〉 6= 〈0, 0〉.
The origin is closest to any point on the circle so we define cp(〈0, 0〉) to be some arbitrary point on
the circle.

Because the Closest Point Method uses a closest point representation, a representation which is
defined throughout the embedding space, it belongs to the class of embedding methods. Some other
embedding methods for surface PDEs (e.g. [CBMO02, Gre06]) make use of level set representations

3

of the underlying surface. Note that the closest point representation has the advantage of not
requiring a notion of “inside/outside” allowing the straightforward representation of surfaces with
boundaries or non-orientable surfaces (e.g., a Möbius strip). Surfaces of codimension-two or higher
such as the Klein bottle in 4D (Section 4.6) or a filament in 3D can also be represented without
additional complication. Thus, an important feature of the closest point representation is that it
does not inherently impose any limitations on the geometry or dimension of surfaces that can be
represented.

2.2 Equivalence of Gradients

Besides the obvious flexibility they give for representing general surfaces, closest point representa-
tions have the advantage of giving us a means to extend quantities φ defined on the surface to the
rest of space via φ(cp(x)). Such closest point extensions result in functions which are constant in
the direction normal to the surface, at least within a neighborhood of the surface. This is important
because it leads to simplified derivative calculations in the embedding space [RM06]. To proceed,
let ∇S denote the gradient intrinsic to the surface S. Then, at the surface, ∇φ(cp(x)) = ∇Sφ since
the function φ(cp(x)) is constant in the normal direction and therefore only varies along the sur-
face. In other words, at points on the surface, surface gradients are the same as standard Cartesian

gradients of φ(cp(x)). This will be all that we need to derive the embedding PDEs used in the
examples appearing in this paper.

A second principle also holds [RM06]. For this, let ∇S · denote the divergence operator intrinsic
to the surface S and let v be any vector field on R

3 that is tangent at S, and also tangent at all
surfaces displaced by a fixed distance from S (i.e., all surfaces defined as level sets of the distance
function to S). Then at the surface ∇ · v = ∇S · v. Combinations of this and the gradient property
may be made, to allow for very general motion laws for second-order operators, including the level
set equation for curvature motion and other nonlinear diffusion operators [RM06]. Indeed, even
higher-order and more general derivative replacements may be considered by carrying out multiple
closest point extensions [RM06], although this has not yet been tried in practice.

To help illustrate these ideas we provide two simple examples on a circle of radius R.

Example 1 Consider the surface gradient, expressed in polar coordinates ∇Sφ = 0er + ∂φ

∂s
eθ,

where s is the arc length. We have s = Rθ, therefore ∂φ

∂s
= 1

R
φθ and

∇Sφ =
1

R
φθeθ.

Now ∇φ(cp(x)) = φr(cp(x))er + 1

r
φθ(cp(x))eθ. As described earlier, φ(cp(x)) is constant in the

direction normal to the surface which in this case is the radial direction, so φr(cp(x)) = 0. Thus,
for points x on the surface

∇φ(cp(x)) =
1

R
φθ(cp(x))eθ =

1

R
φθ(x)eθ = ∇Sφ(x).

Example 2 Consider, in polar coordinates, the surface Laplace-Beltrami operator ∇2
Sφ = φss =

1

R2 φθθ and the standard Laplacian operator ∇2φ(cp(x)) = φrr(cp(x)) + 1

r
φr(cp(x)) + 1

r2 φθθ(cp(x)).

4

Again, φ(cp(x)) is constant in the radial r-direction so both radial derivatives are zero, and for x

on the surface

∇2φ(cp(x)) =
1

R2
φθθ(x) = ∇2

Sφ(x).

2.3 The Algorithm

Having determined a way of evaluating gradients and other derivatives in the embedding space, we
are now in a position to give the Closest Point Method. Central to this task is to determine a PDE,
defined in the embedding space, to generate the flow corresponding to the surface PDE. Suppose
that our surface PDE takes the form

φt = F

(

t, x, φ,∇Sφ,∇S ·
(∇Sφ

|∇Sφ|

))

, (2a)

φ(0, x) = φ0(x). (2b)

More general PDEs can be treated directly by the Closest Point Method, but this form includes
many of the second-order flows that arise in geometric interface motion [Set99, OF03]. Based on the
principles described in our previous subsection, and originally given in [RM06], we may replace the
gradients and divergence operators by the standard Cartesian derivatives in the embedding space,
according to

φt = F

(

t, cp(x), φ(cp(x)),∇φ(cp(x)),∇ ·
(∇φ(cp(x))

|∇φ(cp(x))|

))

, (3a)

φ(0, x) = φ0(cp(x)), (3b)

and the solutions of (2) and (3) will agree at the surface.
Notice that if we start from a φ(0, x) which comes from a closest point extension (as we do here

in (3b)), then the right hand side of (3) and the embedding PDE

φt = F

(

t, cp(x), φ,∇φ,∇ ·
(∇φ

|∇φ|

))

, (4a)

φ(0, x) = φ0(x), (4b)

agree initially (although not for later times). This suggests a way of explicitly treating (3) efficiently:
starting from a closest point extension of the solution at time-step tn, take one forward Euler step
(or stage of a higher-order explicit Runge–Kutta scheme) of (4) to advance in time to φ̃n+1. After
this evolution step φ̃n+1 will not be constant in a direction normal to the surface. To regain this
property, we perform a closest point extension of φ̃n+1 according to φn+1(x) = φ̃n+1(cp(x)). This
gives us an update which is constant in the direction normal to the surface, ensuring once again
that (4) will initially agree with (3) and hence with the original surface PDE (2). We can then
repeat the process of alternating between time-stepping (4) and performing closest point extensions
to obtain the solution at the desired time.

The semi-discrete (discrete in time, continuous in space) Closest Point Method with forward
Euler time-stepping is thus:

1. Find the embedding PDE (4) corresponding to the surface PDE (2).

5

S
x1

ld

q1

× ×

××

x2ld

q2

×

× ×

×

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b grid points
ld interpolation point

× × interpolation kernel

Figure 1: Closest point extensions for grid points x1 and x2 where q1 = cp(x1) and q2 = cp(x2).
In this case, low-order bilinear interpolation is used to estimate a value for φ(qi) = φ(cp(xi)) from
a stencil of the four neighboring grid points to qi.

2. Extend the initial conditions off the surface out into the surrounding domain to each point x,
i.e., φ0(x) = φ0(cp(x)).

At time tn perform the following steps to advance to time tn+1:

3. Perform a forward Euler time-step

φ̃n+1 = φn + ∆tF

(

tn, cp(x), φn,∇φn,∇ ·
(∇φn

|∇φn|

))

.

4. Perform a closest point extension for each point x

φn+1(x) = φ̃n+1(cp(x)).

For higher-order explicit Runge–Kutta methods, we employ a closest point extension following each
stage of the Runge–Kutta scheme.

There is great flexibility available in choosing the spatial discretization. Similar to [RM06] we
will select a finite difference method on a banded, but regular, Cartesian mesh. We will henceforth
assume that the computation is carried out on a regular Cartesian mesh, noting that spectral
methods have also been used to solve the embedding PDE; see [MRa] for details.

The closest point extension is an interpolation step because, although x is a grid point in a
regular Cartesian grid, cp(x) likely will not be. This is illustrated in Figure 1 where bilinear inter-
polation is used to estimate a value for φ(cp(x)) from a stencil of the four neighboring grid points.
Clearly one could use a larger interpolation stencil to increase the accuracy of the interpolation,
and this is precisely the focus of Section 3 where we construct a smooth high-order interpolation
using dynamic stencils.

We conclude this section with a few observations about the Closest Point Method:

• The evolution step of the Closest Point Method (step 3 above) is done using standard methods
in the embedding space. Moreover the embedding PDE does not involve any projections or
other surface-specific modifications; it is simply the standard PDE in the embedding space.
This is very convenient since it implies that standard, well-understood algorithms in R

3 can be
straightforwardly modified to accommodate surface flows. Indeed, this is exactly the approach
we take in Section 4 where we reuse standard Hamilton–Jacobi algorithms.

6

• The Closest Point Method uses a closest point representation for the surface. As discussed
earlier in this section, this has the advantage of allowing the treatment of arbitrary surfaces
of varying codimension, with boundaries, or even without orientation.

• The method does not introduce any artificial boundaries at the edge of the computational
band to carry out banded calculations near the surface. The method merely computes on a
band which is wide enough so that all values in the interpolation stencil have been accurately
evolved (see Section 4.1). As a general principle, artificial boundaries should be avoided since
they can lead to a degradation of accuracy even in simple diffusive problems [Gre06].

• Finally, we remark that the use and meaning of the embedding PDE is fundamentally different
for the level set methods for PDEs on surfaces and Closest Point Method. In a level set
approach the embedding PDE gives the solution at the surface for all times. In the Closest
Point Method the embedding PDE only gives a valid evolution initially and for one explicit
time-step (or stage in a Runge–Kutta method). Thus the extension step is necessary to ensure
the consistency of the algorithm.

For further details on the Closest Point Method and on how it contrasts with other methods and,
in particular, other embedding methods we refer to [RM06].

3 WENO Interpolation

The Closest Point Method relies on a closest point extension whereby the value of φ(x) is set to
the value of φ(cp(x)). As we typically do not know φ at cp(x), we need an interpolation routine to
estimate it from the points near the surface.

In [RM06], this interpolation was done with Lagrange interpolation on fixed stencils that were
chosen symmetrically about the interpolation point. Barycentric Lagrange interpolation (e.g.,
[BT04]) was recommended as a fast, stable method to evaluate the corresponding polynomials.
This is an effective approach for treating smooth differential equations on smooth, well-resolved
surfaces (e.g., diffusion on a sphere or torus). On the other hand, we expect that the use of a
Weighted Essentially Non-Oscillatory (WENO) interpolation will be better suited for problems
which are not smooth [LOC94, JS96, Lan98]. WENO interpolation was considered in [SS03] to in-
terpolate between subdomains of a multidomain WENO finite difference calculation for hyperbolic
conservation laws. However, in [SS03] one of the candidate stencils corresponds to an extrapolation
rather than an interpolation (see Fig. 2 of [SS03]). In this work we derive and study new WENO
interpolation schemes in which all candidate polynomials are interpolants. The question of whether
improved results can be obtained by allowing some extrapolation in the candidate polynomials will
be addressed in future studies.

We begin by deriving a WENO-based interpolation in one dimension and in multiple dimensions.
This is followed by some numerical experiments which illustrate that WENO interpolation can give
very good results even when fixed-stencil Lagrange interpolation fails.

3.1 One-dimensional WENO interpolation

Consider the 1D interpolation problem (Figure 2): given the six points xi−2, xi−1, xi, xi+1, xi+2,
xi+3, corresponding data fi−2, fi−1, fi, fi+1, fi+2, fi+3 and a value of x ∈ [xi, xi+1), we want to

7

b b b b b b

xi−2 xi−1 xi xi+1 xi+2 xi+3

ld

x
︸ ︷︷ ︸

S1

S2
︷ ︸︸ ︷

︸ ︷︷ ︸

S3

Figure 2: The one dimensional interpolation grid, where x ∈ [xi, xi+1). The three candidate stencils
S1, S2 and S3 are also indicated.

estimate f(x).
We being with three candidate interpolants

p1(x) = fi−2 +
fi−1 − fi−2

∆x
(x − xi−2) +

fi − 2fi−1 + fi−2

2∆x2
(x − xi−2)(x − xi−1)

+
fi+1 − 3fi + 3fi−1 − fi−2

6∆x3
(x − xi−2)(x − xi−1)(x − xi),

p2(x) = fi−1 +
fi − fi−1

∆x
(x − xi−1) +

fi+1 − 2fi + fi−1

2∆x2
(x − xi−1)(x − xi)

+
fi+2 − 3fi+1 + 3fi − fi−1

6∆x3
(x − xi−1)(x − xi)(x − xi+1),

p3(x) = fi +
fi+1 − fi

∆x
(x − xi) +

fi+2 − 2fi+1 + fi

2∆x2
(x − xi)(x − xi+1)

+
fi+3 − 3fi+2 + 3fi+1 − fi

6∆x3
(x − xi)(x − xi+1)(x − xi+2),

where each interpolant corresponds to the cubic polynomial fit to the data given on one of the
three candidate stencils (see Figure 2) S1 = {xi−2, . . . , xi+1}, S2 = {xi−1, . . . , xi+2}, and S3 =
{xi, . . . , xi+3}. These interpolants will be combined to give the WENO interpolant

IWENO6(x) = w1(x)p1(x) + w2(x)p2(x) + w3(x)p3(x),

where wi(x), i = 1, 2, 3 are the required weights (still to be determined). In a smooth problem, all
the point data should be used to obtain an interpolation which is as high order as possible, i.e., that
agrees with the degree five interpolating polynomial through all six points. These “ideal” weights
Ci, i = 1, 2, 3 are given by

C1(x) =
(xi+2 − x)(xi+3 − x)

20∆x2
,

C2(x) =
(xi+3 − x)(x − xi−2)

10∆x2
,

C3(x) =
(x − xi−2)(x − xi−1)

20∆x2
.

Note that unlike WENO for hyperbolic conservation laws [LOC94, JS96] and WENO for Hamilton–
Jacobi problems [JP00], here the interpolation point x is not fixed and the values of the ideal weights
depend on x. Still, these Ci(x) are completely analogous to the well-known “ 1

10
, 6

10
, 3

10
” weights in

those works.
In nonsmooth regions, at least one of the interpolations pi(x), i = 1, 2, 3 will be superior to

an interpolation with the “ideal” values because of the problems associated with fitting high-order

8

polynomials to nonsmooth data—namely highly oscillatory results. To decide which stencils to use,
we compute a smoothness indicator for each interpolant. We take the smoothness indicator ISi for
interpolant pi as “a sum of squares of scaled L2 norms of all the derivatives of the [interpolant pi]
over the interval [of interpolation]” [Shu97]. Specifically

ISi =

3∑

j=1

∫ xi+1

xi

(∆x)2j−1

(
djpi(x)

dxj

)2

dx. (7)

If a particular interpolant exhibits rapid change on the interval (xi, xi+1) compared to the other
two interpolants, then it will have larger-in-magnitude derivatives on that interval, which in turn
increases the corresponding smoothness indicator (7). Smooth interpolants—those that are desirable
for use in our interpolation—will exhibit less drastic changes in their derivatives and thus minimize
(7). If all three candidate interpolants are smooth, then all three smoothness indicators will have
similar (small) values. For completeness, (7) can be worked out as

IS1 =
(
− 3579fi+1fi + 2634fi+1fi−1 − 683fi+1fi−2 − 6927fifi−1 + 1854fifi−2

− 1659fi−1fi−2 + 814f 2
i+1 + 4326f 2

i + 2976f 2
i−1 + 244f 2

i−2

)
/180,

IS2 =
(
− 3777fi+1fi + 1074fi+1fi−1 − 1269fifi−1 + 1986f 2

i+1 + 1986f 2
i + 244f 2

i−1

+ 244f 2
i+2 − 1269fi+2fi+1 + 1074fi+2fi − 293fi+2fi−1

)
/180,

IS3 =
(
− 3579fi+1fi + 4326f 2

i+1 + 814f 2
i + 2976f 2

i+2 + 244f 2
i+3 − 683fi+3fi

− 6927fi+2fi+1 + 2634fi+2fi − 1659fi+3fi+2 + 1854fi+3fi+1

)
/180.

We note as expected that the smoothness indicators do not depend on the particular point of
interpolation x because they measure a property of the interpolant candidates themselves.

The computation of the weights is carried out using the smoothness indicators as in the standard
WENO procedure by first calculating

αi(x) =
Ci(x)

(ε + ISi)2
, i = 1, 2, 3,

where ε is a small parameter to prevent division-by-zero in the case when all ISi ≈ 0; we use
ε = 1 × 10−6 in all our calculations. Finally, the weights are

wi(x) =
αi(x)

α1(x) + α2(x) + α3(x)
, i = 1, 2, 3.

Appendix A constructs a formally fourth-order WENO interpolation from two candidate quadratic
interpolants using a similar approach to above. Both of these WENO interpolation routines are
constructed so that wherever the ideal weights are chosen (i.e., wi(x) = Ci(x)), the results are
identical to using fixed-stencil interpolating polynomials through all candidate points. Therefore,
in this case, they are also identical to the fixed-stencil Lagrange interpolation procedure used in
previous Closest Point Method works [RM06, MRa]. In non-smooth problems, however, stencils
corresponding to smooth regions are automatically selected. We shall see later in this section that
this can lead to superior results when working on a nonsmooth or marginally resolved surface, or
when the PDE itself is nonsmooth.

9

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

ld

b grid point
ld2D interp. point
ut1D interp. point in x

Figure 3: Using a 1D interpolation scheme to build a 2D interpolation routine. Suppose we want to
find a value at the point ♦ by interpolating the values at the grid points •. We begin by performing
multiple 1D interpolations in the horizontal direction to obtain the values at the points △. We then
do a final 1D interpolation of the values at points △ to obtain a value at point ♦.

3.2 Higher-Dimensional WENO Interpolation

Higher-dimensional interpolation is built in the standard fashion from one-dimensional interpola-
tions. For example, two-dimensional sixth-order WENO interpolation is carried out by first inter-
polating six times in the x-direction to obtain six values which have x-coordinate values that agree
with the interpolation point. One-dimensional interpolation is then carried out on these six points
to get the desired interpolated value. See Figure 3 for an illustration. Three and higher dimensions
are treated in a similar dimension-by-dimension manner.

3.3 Justification of WENO Interpolation

The use of WENO approximations (as opposed to fixed-stencil approximations) for the spatial
discretization of Hamilton–Jacobi equations is well established [OF03], and thus we intuitively
expect that the WENO interpolation described in Section 3 will perform well on a wider class
of problems than the fixed stencil Lagrange interpolation used in previous Closest Point Method
applications [RM06, MRa].

For example, one might expect that interpolation based on WENO could produce superior
results to fixed stencil Lagrange interpolation when nonsmooth features are encountered, such as
discontinuities in either the solution or the solution slope. Figure 4 shows one such example, where
a one-dimensional function is constructed using interpolation in a cell adjacent to a discontinuity.
Lagrange interpolation based on the six data points gives a spurious oscillation in the cell of interest,
since it interpolates across the discontinuity. On the other hand, with WENO interpolation the
smoothness indicators IS1 and IS2 are very large and the data from the rightmost two data points
give a negligible contribution to the interpolation. This leads to the desired non-oscillatory result.

Another type of problem for which WENO based interpolation is expected to give superior
results arises when the underlying surface is marginally resolved by the grid or is nonsmooth. We
now investigate the former possibility by considering the reinitialization equation (see Section 4.4)
with sinusoidal initial conditions on the lines x = a and x = b, i.e.,

φt + sgn(φ0) (|∇Sφ| − 1) = 0,

10

1.2

1.4

1.6

1.8

2

2.2

2.4 IS
1
 = 0.0295

IS
2
 = 1.51

IS
3
 = 9.07

w
1
(x) = 0.999

w
2
(x) = 1.27e−3

w
3
(x) = 1.05e−5

data point
WENO interp.
Lagrange interp.

x

y

xi−2 xi−1 xi xi+1 xi+2 xi+3

Figure 4: One-dimensional interpolation example. Note the large smoothness indicators IS2 and
IS3 and corresponding small weights w2 and w3; the WENO interpolation thus avoids “crossing”
the large jump between xi+1 and xi+2 which results in a smoother interpolant. The Lagrange
interpolation uses all points {xi−2, . . . , xi+3} and exhibits a spurious oscillation.

with

φ0(a, y) = sin(πy),

φ0(b, y) = cos(πy).

Thinking of the two lines as representing different parts of a surface embedded in R
2, we may

apply the Closest Point Method to compute approximations of the solution. Clearly, the underlying
PDE and initial conditions give a smooth flow. The problem becomes computationally interesting
when the two lines are separated by only a few cells. Such problems illustrate how the method
treats a smooth PDE on a smooth but marginally resolved surface and gives us insight into whether
WENO interpolation can give superior results to the standard Lagrange interpolation approach on
marginally resolved surfaces.

Figure 5 shows the results when the lines are separated by four grid nodes (in this example,
b − a = 4∆x). Using standard WENO for Hamilton–Jacobi equations in 2D for the evolution step
(see Section 4) and Lagrange interpolation (based on degree five polynomials) for the closest point
extension, leads to an obviously incorrect solution with discontinuities and substantial movement of
the zero-contour. This error is due to the close proximity of the lines resulting in the stencil using
data from both lines, an approach which is clearly nonlocal and incorrect. WENO interpolation,
however, chooses stencils based on smoothness and hence avoids using data from the more distant
line. This leads to a non-oscillatory numerical approximation that is in excellent agreement with
the exact result. It turns out via a straightforward examination of the two interpolation stencils and
the evolution stencil that to avoid nonlocal interactions, there must be eight grid points between
the lines in the Lagrange interpolation case but only four grid points in the WENO interpolation
case.

We conclude that it is safer to use WENO for the interpolation whenever the PDE or the under-
lying surface is nonsmooth or marginally resolved. We also recommend WENO-based Hamilton–
Jacobi methods in the evolution step. Such methods have been widely used to treat standard

11

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ
0
(a,y)

φ
0
(b,y)

y

(a) Initial Conditions

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(b) Lagrange Interpolation

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(c) WENO Interpolation

Figure 5: A comparison of Lagrange interpolation versus WENO interpolation on closely spaced
surfaces with b − a = 4∆x. This is a signed distance computation (Section 4.4) with tf = 4 and
periodic boundary conditions.

Hamilton–Jacobi equations in R
2 and R

3 with good results and will be relatively safe when nons-
mooth or marginally resolved problems arise.

4 Numerical Results

We now provide some numerical studies illustrating the behaviour and convergence of the method
for a variety of interesting cases: passive transport, geometric flow under constant normal flow, and
redistancing via the standard reinitialization PDE. We also illustrate the geometric flexibility of the
method by treating normal flow on the triangulated surface of a human hand, and flow on a Klein
bottle, a codimensional-two object in four dimensions. In all of our examples, our WENO-based
interpolation procedure is used to carry out the extension step and standard Hamilton–Jacobi
WENO-based techniques are used to treat the embedding PDE. For efficiency, calculations are
performed in a narrow band around the surface as is described in Section 4.1.

4.1 Bandwidth

The evolution and extension steps of the Closest Point Method may be performed over the entire
embedding space. However, such an implementation is inefficient because only a subset of grid
points in the vicinity of the surface have any effect on the numerical solution. A more efficient
approach is to perform calculations in a narrow band around the surface. This band must be wide
enough to ensure that all nodal values within the interpolation stencil have been accurately evolved.
By working in such a band we obtain the same results as we would for a global calculation because
the closest point extension extends all values out from the surface after each step.

4.1.1 Bandwidth upper bounds

We begin by determining upper bounds on the bandwidth. We consider an R
d embedding space

and for simplicity assume that the grid spacing is ∆x in all d dimensions. Our WENO interpo-
lation stencil from Section 3.2 is a d-dimensional hypercube where each side has a width of 5∆x.

12

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

B
W

ev
o
lv
e

BWex
te

nd

ld

b b grid points
ld interpolation point

× × interpolation kernel

evolution kernel

Figure 6: The minimum bandwidths involved in a Closest Point Method computation for a surface
in the vicinity of point ♦.

dim. BWevolve BWextend

2D 4.2426∆x 6.7082∆x
3D 5.1962∆x 7.3485∆x
4D 6∆x 7.9373∆x

Table 1: Sufficient bandwidth for Closest Point Method evolution and interpolation steps in various
embedding dimensions.

Considering Figure 6, the evolution step can therefore be carried out a set of grid points within a
distance of

BWevolve =
√

32 + · · ·+ 32∆x = 3
√

d∆x, (9)

from the surface, i.e., the diagonal distance across a d-dimensional hypercube with side widths 3∆x.
To generate accurate values on points inside the interpolation kernel at tn+1, the evolution

kernel needs accurate values inside its own finite difference stencil at tn. Thus the interpolation
step at tn must update all grid points within the evolution stencil applied at every grid point in the
interpolation stencil around every point on the surface. In our case, the fifth-order Hamilton–Jacobi
WENO finite difference scheme has a stencil consisting of a “hypercross” (see Figure 6) where each
arm has width 6∆x. From the furthest corner of the interpolation kernel hypercube, the evolution
stencil extends in grid-aligned directions; the extension step should therefore be performed on a
bandwidth of

BWextend =
√

32(d − 1) + (3 + 3)2∆x. (10)

Values of the bandwidths (9) and (10) for two, three and four dimensions are tabulated in Table 1.
Bandwidth calculations for standard Lagrange interpolation can be carried out using similar

considerations; see [RM06] for further details.
When defining the computational domain based on these upper bounds, we note there may

be some points which are inside BWevolve but are outside the union of the interpolation kernels

13

around each closest point on the surface. These points therefore have, at most, a negligible effect1

on the solution as the calculation proceeds. Evolving on these points thus introduces redundant
computation. Likewise, there may be points inside BWextend which are not needed for the evolution;
these introduce additional redundant calculations.

To illustrate these ideas, Table 2 gives some results for a Closest Point Method calculation on
bands which vary by width. We find that our banded procedures gives results identical to computing
over the entire embedding space. Table 2 also illustrates that using smaller bandwidths than those
in Table 1 results in a different solution.

4.1.2 The stencil set approach

As noted above, using the bandwidth upper bounds (9) and (10) to define the computational
bands may include unnecessary points thus increasing the computational expense without improving
accuracy. An alternate approach is to explicitly construct the sets of points which define the
evolution and extension bands. Let Sevolve be the set of nodes in the evolution band, and Sextend be
the set of nodes in the extension band. We proceed as follows:

• Initialize both sets to the empty set, i.e., set Sevolve = ∅ and Sextend = ∅.

• Loop over all grid nodes x in the embedding space that are within a distance BWextend of the
surface:

• Loop over all grid nodes y in the interpolation stencil surrounding cp(x):

• Add node y to the evolution band by setting Sevolve = {y} ∪ Sevolve.

• Let K be the set of grid nodes appearing in the evolution stencil for y. Add this set
to the extension band by setting Sextend = K ∪ Sextend.

After this procedure, Sevolve and Sextend are the sets over which the evolution and extension steps
should be carried out for the Closest Point Method.

Table 2 confirms that for a LLF calculation, the stencil set approach produces identical results
to computing on the entire embedding domain. Table 2 also indicates the number of points in each
band and we note that in three dimensions the extension band contains 94% of the points used
in the bandwidth approach. Likewise, the evolution band contains 85% of the points used in the
bandwidth approach. In the Klein bottle computation in 4D (see Section 4.6), these savings are
more significant since only 72% and 54% of the points are required in the respective bands. The
stencil set approach thus offers computational savings, which, in combination with its simplicity,
leads us to use this approach in the calculations appearing throughout this section.

4.2 Passive transport: flow under a specified velocity field

An important case of interface motion is passive transport or flow under a specified velocity field.
In this case, an interface—represented by the zero-contour of a level set function—is advected via

1In principle, these points could influence the artificial dissipation parameters appearing in schemes such as the
(global) Lax–Friedrichs (LF) scheme [CL84, OF03] or the local Lax–Friedrichs (LLF) scheme [SO88, OF03]. Although
we did not observe any such effects in practice, the stencil set approach discussed next avoids this issue altogether.

14

banding strategy error points in band
BWevolve BWextend evolution extension

10∆x 10∆x 3.546949572342186954009× 10−8 165335 165335
5.2∆x 7.35∆x 3.546949572342186954009× 10−8 82830 119026

5.15∆x 7.35∆x 3.546949570771058627372× 10−8 82326 119026

5.2∆x 7.3∆x 3.546949572069116104960× 10−8 82830 117970
stencil set bands 3.546949572342186954009× 10−8 70296 111412

no banding 3.546949572342186954009× 10−8 1030301 1030301

Table 2: Numerical verification of the bandwidths for a 3D Closest Point Method calculation. The
actual values of error are not important here; we note only that the errors are identical (down to
the bit-pattern of the double precision floating point numbers) provided the bandwidths are taken
larger than the minimums from Table 1. (The computation is the same as Table 4 on a grid of
101 × 101 × 101 with error measured as the maximum absolute value of φ along the theoretical
interface location with x ≥ 0 and z ≥ 0.)

a velocity field which is independent of the interface geometry. On the surface, such a motion
corresponds to the equation

φt + V · ∇Sφ = 0,

for some velocity field V specified on the surface. To evolve this surface PDE using the Closest
Point Method, we instead treat the embedding PDE

φt + V (cp(x)) · ∇φ = 0, (11)

on a uniform 3D grid. Equation (11) is simply the standard equation for passive transport in
3D since V (cp(x)) is well-defined in R

3. It is therefore natural to use standard methods [OF03],
and approximate ∇φ using upwinding and WENO approximations in a dimension-by-dimension
fashion. Namely, for each point xj we compute φ+

x from the values {φj−2, . . . , φj+3} using the
Hamilton–Jacobi WENO procedure. Similarly we compute φ−

x using {φj−3, . . . , φj+2}. If vx, the
first component of V (cp(x)), is positive then we approximate φx with φ−

x , otherwise we approximate
φx with φ+

x . The same procedure is repeated to approximate φy and φz. We then use these values to
approximate V (cp(x)) ·∇φ = vxφx +vyφy +vzφz which allows us to proceed by the method-of-lines.
Time-stepping is done with the three-stage, third-order strong-stability-preserving (SSP) Runge–
Kutta scheme [SO88] (SSPRK(3,3)) with ∆t = 1

2
∆x and with closest point extensions performed

after each stage. We emphasize that apart from the closest point extensions, this is simply a
standard procedure used for evolving (11) in three dimensions.

To test the numerical convergence of the method we consider a circular interface on a unit
sphere, evolving by passive transport. As shown in Figure 7, we take a velocity field that is of
unit length and emanates from one pole to the other in a radially symmetric fashion about the axis
between the poles (like lines of longitude on a tilted globe). A comparison of the numerical result
against the exact solution is provided in Table 3. These results show a clear fifth-order convergence.

For this smooth problem we see that the Closest Point Method gives the full accuracy of the
underlying discretization of the embedding PDE. This implies that our closest point extension
procedure based on WENO interpolation performs as anticipated and without degrading the fifth-
order accurate treatment of the embedding PDE.

15

Figure 7: Passive transport of a circular interface on a sphere. The circle starts initially at y = −0.9
on the far side of the sphere. It is advected over the surface of the sphere via the velocity field
indicated with arrows to the final solution at tf = 2.24 shown on the front of the sphere. The exact
solution—also a circle—is shown but within the tolerances of the plot, it is almost indistinguishable
from the numerical solution. A 26 × 26 × 26 computational grid is chosen on the domain [−2, 2]3.

grid error-in-position order
26 × 26 × 26 1.7263 × 10−4

51 × 51 × 51 2.6721 × 10−6 6.01
101 × 101 × 101 7.3215 × 10−8 5.19
201 × 201 × 201 2.1474 × 10−9 5.09
401 × 401 × 401 6.3800 × 10−11 5.07
801 × 801 × 801 1.8378 × 10−12 5.12

Table 3: Convergence study for a circle moving on a sphere according to a specified velocity field.
Error-in-position measures the error in the position of the interface along the surface where z = 0.
Graphically, the situation is similar to Figure 7, but with the circle beginning initially at y = −0.25
and running to tf = 1. The embedding domain is [−2, 2]3.

16

4.3 Normal flow

We next consider the case of normal flow where the motion of the interface is governed not by an
external velocity field but by the shape of the interface itself. We begin with constant normal flow

φt + C|∇Sφ| = 0,

where the interface moves in the direction of its normal vector at a constant speed C. If C = 1, we
refer to this as unit normal flow and for this problem, the underlying 3D embedding PDE is

φt + |∇φ| = 0, (12)

which is a Hamilton–Jacobi equation with Hamiltonian H(∇φ) = |∇φ|.
We discretize the embedding PDE in space using Lax–Friedrichs for Hamilton–Jacobi equations

[OF03, OS91]. Specifically we use the numerical Hamiltonian

Ĥ =

∣
∣
∣
∣

〈
φ−

x + φ+
x

2
,
φ−

y + φ+
y

2
,
φ−

z + φ+
z

2

〉∣
∣
∣
∣

− αx

(
φ+

x − φ−
x

2

)

− αy

(
φ+

y − φ−
y

2

)

− αz

(
φ+

z − φ−
z

2

)

,

(13)

where φ+
x , φ−

y , etc. are calculated using Hamilton–Jacobi WENO and the latter three terms provide
artificial dissipation. The dissipation coefficients αx, αy, and αz are calculated as the bounds for
partial derivatives of the Hamiltonian H over some domain, the choice of which leads to variations
of the Lax–Friedrichs scheme. We implement the local Lax–Friedrichs (LLF) and stencil local Lax–
Friedrichs (SLLF) variants [OF03]. After computing the numerical Hamiltonian, we can proceed by
the method-of-lines where time-stepping is again done with the SSPRK(3,3) scheme with ∆t = 1

2
∆x

and closest point extensions after each stage.
To test the order of convergence of our method, we compute the motion of a circle on a sphere

via unit normal flow. The exact solution is simply the circle moved along the surface of the sphere,
similar to the passive transport case in Figure 7. Table 4 shows that the Closest Point Method
achieves at least fifth order on this problem, again validating the choice of our WENO interpolation
technique.

Of course, non-spherical surfaces may also be treated. Figure 8 shows the motion of an initial
interface on a torus, as computed using the SLLF scheme for the embedding PDE. As anticipated,
the interface moves from left to right parallel to the y-axis via unit normal flow, separating and
re-combining as necessary.

4.4 Signed Distance / Reinitialization

In practical applications, level set functions may become either too steep or flat during their evo-
lution. Reinitialization is often used to take general level set functions closer to signed distance
functions, or even to generate accurate approximations of signed distance functions. Given the
widespread use of such techniques, it is of interest to see whether the corresponding surface reini-
tialization PDE

φt + sgn(φ0) (|∇Sφ| − 1) = 0, (14)

17

grid error-in-position order
26 × 26 × 26 9.6093 × 10−5

51 × 51 × 51 1.86538 × 10−6 5.69
101 × 101 × 101 3.49426 × 10−8 5.74
201 × 201 × 201 5.59021 × 10−10 5.97
401 × 401 × 401 1.02216 × 10−11 5.77
801 × 801 × 801 2.29317 × 10−13 5.48

Table 4: Convergence study for constant normal flow for a circle moving on a unit-radius sphere.
Error-in-position measures the maximum error in the position of the zero-contour over the quadrant
of the sphere where x ≥ 0 and z ≥ 0. The circle begins at y = −0.25 and the computation proceeds
using LLF to tf = 0.5 with ∆t = 1

2
∆x. The computational domain is [−2, 2]3.

Figure 8: Unit normal flow on a torus with radii 0.8 and 0.4. The interface begins at y = −1 and
the computation proceeds using SLLF to tf = 2. The interface is shown at every 0.4 units of time.
A 101 × 101 × 101 computational grid is taken on the embedding domain [−2, 2]3.

18

grid error-in-pos. of 0-contour order error-in-pos. of 0.15-contour order
26 × 26 × 26 4.42 × 10−4 6.06 × 10−4

51 × 51 × 51 1.08 × 10−5 5.36 1.71 × 10−5 5.15
101 × 101 × 101 4.08 × 10−7 4.72 5.39 × 10−7 4.99
201 × 201 × 201 2.57 × 10−8 3.99 2.27 × 10−8 4.57
401 × 401 × 401 1.12 × 10−9 4.52 9.14 × 10−10 4.64

Table 5: Convergence study for signed distance at t = 5 where φ0 is a signed half -distance function
(i.e., φ0 = d/2 where d is the signed distance function) to a circular interface at y = −0.25 on
the surface of a unit sphere. Error-in-position measures the maximum error in the position of the
contour in the quadrant of the sphere where x ≥ 0 and z ≥ 0.

can be accurately treated using the Closest Point Method. Here we assume that the initial interface
is, as usual, specified as the zero-contour of an initial φ0. Starting from φ0, the surface level set
equation (14) evolves φ so that in the steady state φ(x) gives the signed distance (along the surface)
from x to the interface. In practice, this evolution will also move the zero-contour of φ; we want
this motion to be small, and to vanish as the discretization grid spacings tend to zero.

Treating this problem using the Closest Point Method is straightforward; we discretize the
corresponding three dimensional redistancing embedding PDE

φt + sgn(φ0) (|∇φ| − 1) = 0, (15a)

and as is standard practice [OF03, FAMO99, Mit04], we replace the signum function with a smoother
version

sgn(φ0) ≈ S(φo) =
φ0

√

φ2
0 + ǫ2

. (15b)

Typically, ǫ is set equal to ∆x but in this work we use ǫ =
√

∆x, as suggested in [CT]. This latter
choice of ǫ gave considerably better convergence results than the former.

Following [FAMO99, Mit04], we implement a modified Godunov scheme for (15). Specifically,
at each grid point xj we compute φ+

x and φ−
x using Hamilton–Jacobi WENO. We then select an

approximation Φx to φx: if S(φ0)φ
+
x ≥ 0 and S(φ0)φ

−
x ≥ 0 then choose Φx = φ−

x ; if S(φ0)φ
+
x ≤ 0

and S(φ0)φ
−
x ≤ 0 then choose Φx = φ+

x ; if S(φ0)φ
+
x > 0 and S(φ0)φ

−
x < 0 then choose Φx = 0;

finally if S(φ0)φ
+
x < 0 and S(φ0)φ

−
x > 0 then we compute s = S(φ0)

|φ+
x |−|φ−

x |

φ+
x −φ−

x

, and if s ≥ 0, choose

Φx = φ−
x or if s < 0, then choose Φx = φ+

x . Having repeated this procedure in the y and z directions
at xj, we can approximate

S(φ0) (|∇φ| − 1) ≈ S(φ0)
(√

Φ2
x + Φ2

y + Φ2
z − 1

)

.

The Closest Point Method then proceeds as a method-of-lines computation with closest point ex-
tensions following each stage of the SSPRK(3,3) scheme with ∆t = 1

2
∆x.

Table 5 shows between fourth- and fifth-order convergence for the signed distance problem.
We remark that in both columns of the table, errors in contour position are used to determine
convergence rates.

19

(a) t = 0 (b) t = 0.665 (c) t = 1.065 (d) t = 1.315

Figure 9: Unit normal flow on “Laurent’s Hand” shown at various times. The interface—visualized
here as a transition from dark to light—begins at the tip of the little finger. The computation uses
LLF on the computational domain [−1, 1]3 with a 401 × 401 × 401 grid.

4.5 Triangulated Surfaces

Our examples thus far have involved fairly simple surfaces. Complex surfaces may also be treated
by the Closest Point Method so long as a closest point representation of the underlying surface is
available or can be computed.

Extensive, and freely available collections of complex shapes exist, and many of the available
surfaces are in a triangulated form. Naturally, we wish to be able to compute flows on such surfaces,
a task that, for the Closest Point Method, requires the construction of a closest point representation
from a surface triangulation.

A straightforward method to convert triangulated surfaces into closest point representations is
to loop over the list of triangles to directly determine the triangle closest to each grid node in
the embedding space. Then the closest point on the surface is given by the closest point on the
corresponding closest triangle. Näıvely implemented, this approach is computationally expensive
(and inefficient) since each triangle must be examined for each node.

A much faster construction of the closest point function is obtained by taking into account that
the method works on a narrow computational band [MRb]. First, for each triangle, we determine all
nodes that are within the bandwidth, BWextend, of the triangle (nodes that are further away cannot
be influenced by that part of the surface). For each node, this gives a list of triangles. This list is
sufficiently small that it is normally quite practical to directly examine each member to determine
the closest triangle (and hence the closest point on the surface). See [MRb] for full details on this
initialization procedure.

Notice that the triangulation is used only in the initial computation of the closest point represen-
tation and for plotting purposes; otherwise the Closest Point Method calculation proceeds exactly
as described in Section 2 and our previous examples. For example, Figure 9 gives a computation for
unit normal flow on the surface of “Laurent’s Hand” [SAA07] (the hand consists of 351048 vertices

20

comprising 701543 triangles). The flow itself was carried out using the same code as was used in
Section 4.3; as anticipated, the only modifications appear in the initial computation of the closest
point representation and in the plotting procedure.

4.6 Klein Bottle

The Klein bottle is a famous hypersurface embedded in 4D which is closed but has no inside and
outside. Although the Klein bottle appears self-intersecting when drawn in 3D (see Figure 10), the
complete hypersurface in 4D is not. We consider a parameterization [Wik07] in terms of (u, v) ∈
[0, 2π)2

x =

{
3

7
cos u (1 + sin u) + 2

7
r
(
1 − cos u

2

)
cos u cos v, if u ≤ π,

3

7
cos u (1 + sin u) − 2

7
r
(
1 − cos u

2

)
cos v, otherwise,

(16a)

y =

{
8

7
sin u + 2

7
r
(
1 − cos u

2

)
sin u cos v − 1

7
, if u ≤ π,

8

7
sin u − 1

7
, otherwise,

(16b)

z =
2

7
r
(

1 − cos u

2

)

sin v, (16c)

w = −8

7
cos u, (16d)

where r controls the radius of the bottle (we use r = 1). We define a function fKlein : R
2 → R

4

such that x = 〈x, y, z, w〉 = fKlein(u, v) as in (16).
This surface is unlikely have a simple closest point function. However we have the parameteri-

zation (16), and thus for a given grid point x0 = 〈x0, y0, z0, w0〉, we can compute the closest point
by minimizing

d(u, v) = ‖ 〈x0, y0, z0, w0〉 − fKlein(u, v)‖2,

over (u, v) (using, for example, Matlab’s fminsearch) to find (umin, vmin). The closest point to x0

is then
cp(x0) = fKlein(umin, vmin).

Once we have performed this straightforward—albeit time consuming—series of optimizations, we
store the results which can then be reused for any further Closest Point Method calculations on the
same grid.

Figure 10 shows the results of the reinitialization equation calculation (Section 4.4) on the
surface of the Klein bottle. This example illustrates that the Closest Point Method can treat both
non-orientable surfaces and surfaces of codimension-two. We stress this computation requires no
special changes to the Closest Point Method illustrating that the method can handle very general
surfaces without any particular modifications. We also note that although the computational grid
was 51×51×51×51, only 340057 points or about 5% of that grid is contained in the band used for
computation. We anticipate that problems of high codimension would benefit in terms of memory
requirements from a more flexible storage scheme then the simple 4D array used here.

21

Figure 10: Reinitialization / Signed Distance on a Klein bottle from initial conditions φ0 = 1.1−w.
Left: (x, y, z)-projection, right: (x, y, w)-projection. Each transition from dark-to-light or light-to-
dark represents contours of equal distance from the closer of the two initial interfaces indicated with
dashed lines. Note that some shaded bands appear narrower than others in the 3D projections of
the Klein bottle. The grid is 51 × 51 × 51 × 51 on the domain [−2, 2]4.

5 Conclusions

The Closest Point Method is a recent technique for the solution of PDEs or other motions con-
strained to surfaces. This paper applies the Closest Point Method to level set equations to obtain
a robust technique for evolving interfaces on very general surfaces. Note, in particular, that the
method retains the advantages of the level set method itself—i.e., it automatically handles self-
intersecting interfaces and it makes use of standard high-order WENO methods in the embedding
space (typically R

3) to evolve the level set equations themselves.
New to the Closest Point Method is our derivation of a Weighted Essentially Non-Oscillatory

(WENO) based interpolation scheme suitable for use in the closest point extension step. The Closest
Point Method, using this interpolation scheme together with standard Hamilton–Jacobi WENO
discretizations for the evolution of the embedding level set equation, achieved fourth- and fifth-
order results on convergence test problems for passive transport, normal flow, and the reinitialization
equation. It is noteworthy that these are the first results that indicate the Closest Point Method
is capable of computing surface flows with a high order of accuracy. While our study here focused
on the level set equation, WENO interpolation is likely to find use in many other settings such as
Hyperbolic Conservation Laws; the main requirement being the desire to use a high-order accurate
method for a PDE or surface which is somewhere nonsmooth or marginally resolved.

We computed flows defined on a triangulation of the surface of a human hand and on the surface
of the non-orientable, codimension-two Klein bottle, illustrating that the Closest Point Method is
very flexible with respect to the geometry and dimension of the surface.

Our examples show that level set equations on surfaces can be treated to high order in a straight-

22

forward manner using the Closest Point Method. We are investigating the application of the Closest
Point Method to other classes of PDEs, including high-order PDEs which should be treated with
implicit time-stepping. We are also interested in applications of PDEs on surfaces such as might
arise in image inpainting or segmentation on surfaces.

6 Acknowledgements

The authors thank Richard Tsai for his suggestions regarding convergence for the reinitialization
equation.

A Fourth-order WENO interpolation

In Section 3 we derived a formally sixth-order WENO interpolation scheme using three candi-
date interpolants. We can also construct a fourth-order (in smooth regions) WENO interpola-
tion scheme based on two quadratic interpolant candidates. In this case, we have the four points
xi−1, xi, xi+1, xi+2 and corresponding data fi−1, fi, fi+1, fi+2 and again want to estimate f(x) for
x ∈ [xi, xi+1). The two candidate interpolants are

p1(x) = fi +
fi+1 − fi−1

2∆x
(x − xi) +

fi+1 − 2fi + fi−1

2∆x2
(x − xi)

2,

p2(x) = fi +
−fi+2 + 4fi+1 − 3fi

2∆x
(x − xi) +

fi+2 − 2fi+1 + fi

2∆x2
(x − xi)

2,

with ideal weights

C1(x) =
xi+2 − x

3∆x
,

C2(x) =
x − xi−1

3∆x
,

and smoothness indicators

IS1 =
(
26fi+1fi−1 − 52fifi−1 − 76fi+1fi + 25f 2

i+1 + 64f 2
i + 13f 2

i−1

)
/12,

IS2 =
(
26fi+2fi − 52fi+2fi+1 − 76fi+1fi + 25f 2

i + 64f 2
i+1 + 13f 2

i+2

)
/12.

The fourth-order WENO interpolant is thus

IWENO4(x) = w1(x)p1(x) + w2(x)p2(x),

where w1(x) and w2(x) are calculated from the smoothness indicators by

w1(x) =
α1(x)

α1(x) + α2(x)
, and w2(x) =

α2(x)

α1(x) + α2(x)
,

with

α1(x) =
C1(x)

(ε + IS1)2
, and α2(x) =

C2(x)

(ε + IS2)2
.

23

References

[BCOS01] Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Variational
problems and partial differential equations on implicit surfaces. J. Comput. Phys.,
174(2):759–780, 2001.

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation. SIAM

Rev., 46(3):501–517 (electronic), 2004.

[CBMO02] Li-Tien Cheng, Paul Burchard, Barry Merriman, and Stanley Osher. Motion of curves
constrained on surfaces using a level-set approach. J. Comput. Phys., 175(2):604–644,
2002.

[CL84] M. G. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton–Jacobi
equations. Math. Comp., 43(167):1–19, 1984.

[CT] Li-Tien Cheng and Richard Tsai. Redistancing by flow of a standard Eikonal equation.
In preparation.

[FAMO99] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J.

Comput. Phys., 152(2):457–492, 1999.

[Gre06] John B. Greer. An improvement of a recent Eulerian method for solving PDEs on
general geometries. J. Sci. Comput., 29(3):321–352, 2006.

[JP00] Guang-Shan Jiang and Danping Peng. Weighted ENO schemes for Hamilton–Jacobi
equations. SIAM J. Sci. Comput., 21(6):2126–2143 (electronic), 2000.

[JS96] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted ENO
schemes. J. Comput. Phys., 126(1):202–228, 1996.

[Lan98] Culbert B. Laney. Computational gasdynamics. Cambridge University Press, Cam-
bridge, 1998.

[LOC94] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory
schemes. J. Comput. Phys., 115(1):200–212, 1994.

[Mit04] Ian Mitchell. A toolbox of level set methods. Technical Report TR-2004-09, University
of British Columbia Department of Computer Science, July 2004. http://www.cs.ubc.
ca/~mitchell/ToolboxLS/Papers/Toolbox/toolboxLS-1.0.pdf.

[MRa] Barry Merriman and Steven J. Ruuth. Diffusion generated motion of curves on surfaces.
J. Comput. Phys. To appear.

[MRb] Barry Merriman and Steven J. Ruuth. Embedding methods for the numerical solution
of PDEs on manifolds. In preparation.

[OF03] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces,
volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.

24

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys., 79(1):12–
49, 1988.

[OS91] Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory schemes for
Hamilton–Jacobi equations. SIAM J. Numer. Anal., 28(4):907–922, 1991.

[RM06] Steven J. Ruuth and Barry Merriman. A simple embedding method for solving partial
differential equations on surfaces. 2006. Submitted.

[SAA07] L. Saboret, M. Attene, and P. Alliez. “Laurent’s Hand”, the AIM@SHAPE shape
repository. http://shapes.aimatshape.net, 2007.

[Set99] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in com-

putational geometry, fluid mechanics, computer vision, and materials science, volume 3
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, second edition, 1999.

[Shu97] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. Technical Report NASA CR-97-206253
ICASE Report No. 97-65, Institute for Computer Applications in Science and Engi-
neering, November 1997.

[SO88] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially nonoscillatory
shock-capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[SS03] Kurt Sebastian and Chi-Wang Shu. Multidomain WENO finite difference method with
interpolation at subdomain interfaces. J. Sci. Comput., 19(1-3):405–438, 2003.

[Wik07] Wikipedia contributors. Klein bottle. Wikipedia, the free encyclopedia, http://en.
wikipedia.org/w/index.php?title=Klein_bottle&oldid=133679151, May 2007.
Accessed 2007-05-29.

25

