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Abstract

Strong-stability-preserving (SSP) time discretization methods are
popular and effective algorithms for the simulation of hyperbolic con-
servation laws having discontinuous or shock-like solutions. They
are (nonlinearly) stable with respect to general convex functionals
including norms such as the total-variation norm and hence are of-
ten referred to as total-variation-diminishing (TVD) methods. For
SSP Runge-Kutta (SSPRK) methods with positive coefficients, we
present results that fundamentally restrict the achievable CFL coef-
ficient for linear, constant-coefficient problems and the overall order
of accuracy for general nonlinear problems. Specifically we show that
the maximum CFL coefficient of an s-stage, order-p SSPRK method
with positive coefficients is s — p + 1 for linear, constant-coeflicient
problems. We also show that it is not possible to have an s-stage
SSPRK method with positive coefficients and order p > 4 for general
nonlinear problems.

1 Introduction

Popular time-stepping schemes are almost exclusively based on linear sta-
bility analysis; i.e., the behaviour of the scheme on the test equation
dy/dt = Ay for R(\) << 0. Indeed such analysis is very effective on prob-
lems having smooth solutions. Unfortunately however, these schemes often
perform poorly on problems having discontinuous or shock-like solutions.
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This poor performance can manifest itself in the form of spurious oscil-
lations, overshoots, or progressive smearing. On the other hand, strong-
stability-preserving (SSP) time discretization methods [6, 7, 4, 8] are based
on a nonlinear stability property that makes them particularly suitable for
the simulation of partial differential equations having nonsmooth solutions.
This property can be viewed as a generalization of the more well-known
total-variation-diminishing (TVD) property to convex functionals or norms
other than the total variation [4].

Consider the system of ODEs

U = L(U), (1)

subject to appropriate initial conditions, obtained from the method of lines
applied to the hyperbolic conservation law

u + f(w)e =0 (2)

subject to appropriate initial and boundary conditions. We assume that (2)
has been suitably discretized in its spatial variables. Then when properly
combined with a SSP time-stepping scheme and appropriate time-step re-
striction, the numerical solution obtained does not exhibit nonlinear insta-
bilities. However, nonlinear instabilities can occur in a numerical solution
obtained with, e.g., a SSP spatial discretization scheme, but a standard
(i.e., linearly stable) time-stepping scheme [3].

The favourable properties of SSPRK methods are derived only from
convexity arguments. In particular, if the forward Euler method is strongly
stable in a given norm with a certain CFL coefficient, higher-order SSPRK
methods with a modified CFL coefficient can be constructed as convex
combinations of forward Euler steps with various step sizes [7].

In this paper we prove two fundamental barriers on SSPRK methods
with positive coefficients: one on the maximum CFL coefficient attainable
for linear, constant-coefficient problems, and one on the maximum order
attainable for any method applied to a general nonlinear problem. We
note that the first theorem is particularly useful because it implies that
any bound obtained for general problems can be no better than this bound
on the CFL coefficient for linear, constant-coefficient problems. The second
theorem is significant in that it naturally implies that negative coefficients
must be used in order to obtain SSPRK methods for a sufficiently high order
when applied to a general nonlinear problem. This has a direct impact
on researchers designing high-order methods as well as on practitioners
because of the way schemes with negative coeflicients are implemented (see
below).

Some previous results on barriers for CFL coefficients for SSPRK meth-
ods with positive coefficients are as follows. In [6], the maximum CFL co-
efficient of an s-stage, first-order SSPRK scheme was shown to be s; see



also [8] for an alternative proof. In [8], the maximum CFL coefficient of
an s-stage, second-order SSPRK scheme was shown to be s — 1; see also
[3] for an alternative proof of the s = 2 case. However linear, constant-
coefficient differential equations play an important role in application and
results are often given specifically for this special case (see e.g., [4]). In this
paper we show that the maximum CFL coefficient of an s-stage, order-p
SSPRK scheme applied to a linear, constant-coefficient problem is s —p+1.
Gottlieb and Gottlieb [2] give a similar result with a different method of
proof. This theorem generalizes the result of [4] that the maximum CFL
coefficient attainable for an s-stage, order-s SSPRK method applied to a
linear, constant-coefficient system is 1.

The following order barriers for SSPRK methods have also been proven.
Gottlieb and Shu [3] proved that no four-stage, fourth-order SSPRK method
exists having positive coefficients; i.e., involving just evaluations of L(-)
(see Section 2). A fourth-order accurate method was also given in [3] at
the additional expense of introducing two additional evaluations of a re-
lated operator L(-). Unfortunately the introduction of L(-) typically leads
to sub-optimal efficiency both in terms of the effective CFL coefficient and
memory usage of the method. In [8], the present authors give a five-stage,
fourth-order SSPRK method with positive coefficients; results for up to 8
stages have also been obtained [9]. However, this is where the possibility of
high-order SSPRK methods with positive coefficients ends: In this paper
we show no such method exists with order greater than 4.

The remainder of this paper is organized as follows. In Section 2, we
briefly describe SSP schemes and their use. In Section 3, we prove that
the maximum CFL coefficient of an s-stage, order-p SSPRK method with
positive coefficients applied to a linear, constant-coefficient problem is s —
p + 1. Representations of schemes that attain this maximal bound are
given in [2]. In Section 4, we prove that an SSPRK method with positive
coefficients and order p > 4 cannot exist for general nonlinear problems.

2 SSP Schemes
We begin by recalling the definition of strong stability:

Definition 2.1 A sequence {U™} is said to be strongly stable in a given
norm || - || provided that ||[U™!|| < ||U™|| for all n > 0.

Here we assume that U™ represents a vector of solution values on a mesh
obtained from a method-of-lines approach to solving a PDE. The choice
of norm is arbitrary, with the TV-norm and the infinity norm being two
natural possibilities. The choice of a relevant norm depends on the problem
to be solved. For example, strong stability is relevant to the solution of



(2) because exact solutions to the scalar problem have a range-diminishing
property. Thus the strong-stability property is a useful property to require
of a numerical solution to (2), even in the case of systems of conservation
laws.

In this paper we take our canonical SSPRK method to be an s-stage,
explicit Runge-Kutta method written in the form

v® = pn (3a)
i—1

UD = S (auU™ + At LUM)),  i=1,2,...,5, (3b)
k=0

Un+1 _ U(s), (30)

where all the a;x, Sir > 0 and ay, = 0 only if 8;, = 0 [6]. This representa-
tion of a Runge-Kutta method corresponds to a unique Butcher array form
(see e.g., [5]). However, a given Butcher array form generally corresponds
to many algebraically equivalent forms (3) [7, 8].

Throughout this article, we give representations (3) that naturally allow
stability restrictions to be read from the coefﬁcients of the scheme.

For consistency, we must have that Zk o =1, foralli=1,2,...,s.
Hence, if both sets of coefficients a;y, Bix are positive, then (3) is a convex
combination of forward Euler steps with various step sizes ilk At. The
Runge-Kutta scheme written in this form is particularly convenient to make
use of the following result [7, 4]:

Theorem 2.2 If the forward Euler method is strongly stable under the
CFL restriction At < Atpg, then the Runge-Kutta method (3) with S >
0 is SSP provided

At < CAtpg,
where C is the CFL coefficient
. QG
C =
T B

A similar result holds with 3; replaced by |B;| in the definition of ¢ pro-
vided L(-) is replaced with the related operator L(-) for each B, < 0, where
L(-) is assumed to be strongly stable for Euler’s method solved backwards
in time for a suitable time-step restriction.

3 CFL Barrier for Linear, Constant-Coeffi-
cient Problems

Theorem 3.1 Consider the family of s-stage, order-p SSPRK methods (3)
with ag, Bix > 0 applied to (1) with a linear, constant-coefficient L(-). The



CFL restriction then satisfies At < (s —p+ 1)Atpg.
Proof. Define

1
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Then the SSPRK method (3) applied to (1) with linear, constant-coefficient
L(U) may be written
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Denote the coefficient of (At)9L1(U™) by A,(e, ), 0 < ¢ < s. Because the
scheme is linear and order p we also know that

1
Aq(aaﬁ) = a

for all 0 < ¢ < p. To obtain a contradiction, suppose that the CFL coeffi-
cient is greater than (s —p + 1). Then

1
/8 J = s—p + la J ( )
for all a;; and f3;; with equality holding if and only if a;; = 0. Thus,
1
pfl,kzw--,kz (a,ﬁ) < Ekq (Pflfn,kz,---,ke(a’ﬁ))’ (5)

s—p+1



where Ej, (Pkukasske (o B)) replaces all instances of Brye by ar,e, 0 <
kg < s—1,and 0 < ¢ < k; — 1 where applicable in the polynomial
Pkukasske(o B). Thus,

AB) = 33 Y PReR(ag)

k1=1ko>k; k >kp—1

8§
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ki1=1ka>k1 kp>kp_1 g=1

e D DD S )

k1=1ko>ky kp>kp—1 q:1

with equality holding if and only if A,(a,5) = 0. But A,(«, ) # 0 for a
method of order p so

1 s s s

iy By (P12 P (o))

Ap(a,B) <
P
s=P+1 pI=1hko>k kp>kp_1 P =1

1 1 - - - k1,k2,. . kp_1,9
= —p+1 (7) XX > > Eq(Ps P (e, B))
TP P/ ki=1ka>k1  kp_1>kp_oaq@{ky ko,....kp 1}
1 s ki.kg,..., Ry
< (—) I YD)
soptldr k1 1’62>k1 kp—1>kp_2q@{ky ko, ...kp_1}
1 s kp, ko, ko
= (7) > G-p+1)P, P~ a,p)
s—p+1\p/ = 1k2>k1 kp_1>kp_o

1
= (*)Ap—l(a,ﬁ)
P

1

p!

which is a contradiction. We therefore conclude that the CFL coefficient
must be less than or equal to (s —p+ 1).

We note that the order conditions that are relevant for linear, constant-
coefficient problems are the so-called sub-quadrature or tall-tree [5] condi-
tions given in Butcher notation by:

bk = —— k=0,1, (6a)

bl Ake k=1,2,...,p—2, (6b)
where ¢ = (1,1,...,1)T.

These high- stage schemes are useful in practice because the additional
computational cost per step is more than offset by the gain in stable
step size. Moreover, this efficiency gain increases with increasing order.



For example, the optimal four-stage, order-three SSPRK scheme denoted
SSPRK (4, 3) in [8] costs 33% more than the more well-known optimal three-
stage, order-3 scheme [7] denoted SSPRK(3,3) but offers a 100% larger
CFL coefficient. This leads to an effective CFL coefficient of Ceg = 3/2
for SSPRK (4, 3) versus Ceg = 1 for SSPRK(3,3). We also note that these
third-order schemes as well as all optimal schemes of orders 1 and 2 are
presented in [8], where they are shown to be optimal for nonlinear problems
as well; i.e., the optimality bounds for linear, constant-coefficient problems
coincide with those for general nonlinear problems in these special cases.

4 Order Barrier for SSPRK Schemes applied
to Nonlinear Problems

In this section we prove a fundamental restriction on SSPRK methods
with positive coefficients: their overall order for general nonlinear problems
cannot exceed 4. This result now forces research into high-order SSPRK
methods to focus on including negative coefficients; we report elsewhere on
investigations along these lines.

In order to relate the representation (3) to the standard Butcher coef-
ficients, we introduce the following notation (cf. [3]):

v = yr, (7a)
i—1

UD = UO 4+ At kg L(UN), i=1,2,...,s, (7b)
k=0

urtt = U, (7c)

The coefficients x;; are related to the a;, Bir recursively by

i—1
Kik = Pik + Z QijKjk- (8)

j=k+1
It is also easy to see that the coefficients k;; are related to the Butcher
array quantities a;x, by by
@i = RKRi-1,k—1, k:1,2,...,i—1, i:1,2,...,8—1,
bk = KRs,k—1, ]{::1,2,...,8.
Theorem 4.1 There is no s-stage SSPRK method (3) with Sz > 0, k =
0,1,...,i—1,9=1,2,...,s with order p > 4.

Proof. The non-existence proof relies on two results, one which is known
and one which will be proven here. Using standard Butcher notation,



the known result is that every Runge-Kutta method of order p > 4 must
satisfy b; < 0 for at least one 7. This result is a consequence of a fifth-order
condition. Following the notation used in [1], define the vector v» = % —Ac,
where (-)? is understood to be componentwise, s > 4, and ¢ and A are the
standard Butcher quantities. Using this notation, one of the fifth-order
conditions can be written as

b3 =0. 9)

The vanishing of vector 2 is the defining condition for a Runge-Kutta
method to have stage order 2; i.e., all internal stages u?, i =1,2,...,s—1,
will be (at least) second-order approximations to the solution at times
t = t, +c;At. Clearly, the i = 1 stage of any explicit Runge-Kutta method
cannot have stage order greater than 1; thus at least one component of s
must be non-zero. Thus for (9) to hold, we must have at least one b; < 0.
The result proven here is that a SSPRK method (3) with 8;;, > 0 forces
the corresponding Butcher array to satisfy b; > Oforall¢ =1,2,...,s. The
contradiction with the fifth-order condition (9) is then immediate.

Lemma 4.2 An s-stage SSPRK method of the form (3) with o, B >0
has Butcher array coefficients satisfying b; > 0 for all i = 1,2,...,s.

Proof. In the proof we make repeated use of the following results:
e Because all ayy, Bi, > 0, all Ky, > 0; ie., ki #0 <= Ky > 0.

o Iffor agivenl € {0,1,...,s— 1}, the quantities 8;; =0,i =1+ 1,1+
2,...,s, then the method (3) does not truly have s stages.

e We require a;; =0 = i = 0; thus also 8 #0 — ay #0.

We begin by noting by = ks s—1 = fs,s—1 # 0; otherwise the method
would not truly have s stages.

Now given I € {0,1,...,s — 2}, assume kg, # 0 for k = s — 1,5 —
2,...,1 + 1. Our strategy is to show that the assertion kg = 0 leads to
Bi =0fori=1+1,1+2,...,s, which contradicts the assumption that the
method has s stages. That is, by = kg, ZOfork =s—-1,5—-2,...,[+1 —
by = kg # 0. The proof of the lemma then follows by induction.

Suppose kg = 0. Then from (8) 85 = 0 and

at least one of {ag, ki } must vanish for each k =1+ 1,14+2,...,5s — 1.

(10)
In particular since by = ks 5—1 = B5,5—1 70 = a;,s—1 # 0 we have from
(10) that ks_1, = 0. Thus fs_1,; = 0 and

at least one of {as_1, Kk} must vanish for each k =1+1,14+2,...,s—2.
(11)



Of course, if | = s — 2, the remainder of the proof is not relevant.

We note that from (11) it is easy to see that if kK =0, k =1+ 1,1+
2,...,5 — 2, we immediately obtain By = 0, k =1+ 1,1+ 2,...,5 — 2,
which together with 85 = 0 from (10) leads to the desired contradiction.
We now show that k; = 0 generically in (10) regardless of whether or not
agp, vanishes. This will complete the proof.

The only possibility for ks_; # 0 in (11) is for as_1,s—2 = 0. Then
Bs—1,s—2 = 0, which by definition means that ks_; s—» = 0. But by hypoth-
esis Kgs—2 = Qg 5—1Ks—1,5—2 +Bs,s—2 # 0 = 63,3—2 7é 0 = g 5—2 7é 0.
Now from (10) ks—2; = 0, and so we must have f;_»; = 0 and

at least one of {as_2, kg } must vanish for each k =1+1,14+2,...,s—3.
(12)

Of course, if ] = s — 3, the proof is complete.

Now the only possibility for £s_3; not to vanish in (12) is for as_2 53
to vanish. Then 3,_» s_3 = 0, which by definition means that ks_» ;—3 = 0.
But by hypothesis Ks,s—3 = Qg s—2Ks—25—3 + Qg s—1Ks—1,5—3 + 53,3—3 # 0.
Because k5—2 s—3 = 0 and o s—1 # 0, this implies K51 s—3 # 0, B s—3 # 0,
or both. We now show that either condition leads to ks_3,; = 0.

If Ks—1,5—3 = Qs—1,5—2Ks—2,5-3 T /8571,573 7é 0 then /8571,573 7é 0 =
as_1,5—3 # 0, which from (11) means that ks_5; = 0.

If B55—3 # 0 then a; 53 # 0 and from (10) we have ks_3; = 0.

Thus in any event we must have 3,_3; = 0 and

at least one of {as_3, kr } must vanish for each k =1+1,1+2,...,s—4.
(13)
Of course, if ] = s — 4, the proof is complete.
Similarly we can obtain conditions of the form S+ ; = 0 and

at least one of {ay= i, ki } must vanish for each k =1+1,1+2,...,k* -1,

(14)
k* € {s—4,s—5,...,1+2}. By considering the only possibility for kj-_1
not to vanish in (14) is to have g« g-—1 vanish, then Bi« p+_1 vanishes,
which by definition leads to kg« -1 = 0. Then from the hypotheses
ksk+—1 7 0, we obtain conditions of the form

Kige—1 0, =k"+1,E"+2,...,s =1, or Bsp-—1 #0, (15)

or any subset thereof. We conclude by showing that fs4«—1 # 0 =
ki«—1,; = 0 and that every kj«—1 # 0 eventually leads to xi11; = 0.
Combining the first condition over all cases of k* in succession with the
second condition yields the desired result.

The condition fs ;-1 # 0 = ask~—1 # 0, which using kg =0 =
Ki=—1, = 0 from (10). Now if k; g«_1 # 0, then

Rj* k*—1 ;é 07 j* = k* + lak* +277.] - 27 or Bj,k*—l ;é 0’ (16)



or any subset thereof, using a; j_1 = 0 from a previous step and fg+ g+—1 =
0. This set is clearly contained in (15), so we can proceed in this manner un-
til we reach kj43 ;41 # 0if [ is odd or kj44,441 7 0 if [ is even. It has already
been shown how the corresponding non-vanishing conditions on Fj4341
and Bj44,41 can be converted to ki+1,; = Bi+1, = 0. It is also easy to see
from here that k13,141 = qi43,1426142,041 + Bit3,+1 0 = Bi43,041 #0
since Ki42,+1 = 0 from a previous step. Thus we have ay43,41 # 0 and
using ki4+3; = 0 from a previous step we get k;41; = Bi41,; = 0. Sim-
ilarly, Ki4a,141 = Qu44,1+3K143,1+1 + Qita 126142 141 + Bigai+1 # 0 =
Bit4,1+1 7 0 since Kyy21+1 = 0 and ay44,4+3 = 0 from previous steps. Thus
we have ajy4541 # 0 and using kj14; = 0 from a previous step we get
Ki+1,0 = Bi+1, = 0. This completes the proof.
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