Convolution-Thresholding Methods
for Interface Motion

Steven J. Ruuth?
Department of Mathematics & Statistics
Simon Fraser University
8888 University Dr.

Burnaby, British Columbia

CANADA V5A 1S6.
E-Mail: sruuth@cs.sfu.ca

Barry Merriman?

University of California
Department of Mathematics
405 Hilgard Avenue

Los Angeles, CA 90095-1555.
E-Mail: barry@math.ucla.edu

Subject Classifications: 65-02, 82C24
Key Words: Huygens’ principle, diffusion-generated motion, convolution,
threshold dynamics, cellular automata, curvature motion, spectral method.

! This research was partially supported by the President’s Research Fund at SFU.
2The work of this author was partially supported by NSF DMS94-04942, ONR

NOO014-92-J-1890.



Proposed running head:
Convolution-Thresholding Methods

Proofs to be sent to:
Steven J. Ruuth
Department of Mathematics & Statistics
Simon Fraser University
8888 University Dr.
Burnaby, British Columbia
CANADA V5A 156

FAX: (604) 291-4947
E-mail: sruuth@ces.sfu.ca



Abstract

Convolution-thresholding is a new approach to describing inter-
face motion that unifies and generalizes Huygens’ principle, threshold
growth cellular automata and reaction-diffusion equations. Convo-
lution methods have many desirable properties, including automatic
capture of topological change, production of curvature motion with-
out explicitly computing curvature, natural extension to the motion
of triple point junctions, and fast, accurate implementation. In this
paper, we summarize the relation of convolution-thresholding schemes
to previous methods, and review the theoretical and algorithmic de-
velopment of this approach. We also review recent applications to
computer vision, developmental biology, excitable media and material
science.
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1 Introduction

There are many phenomena in which sharp interfaces form, persist and
propagate. Notable examples include optical or acoustic wavefronts mov-
ing through materials, the growth of crystalline materials, the de-blurring of
photographic images, the evolution of detonation fronts in explosive materials
and the propagation of excitation waves in heart and neural tissue.

Modeling these processes often leads to equations of motion for a surface
moving with a normal speed that depends on the surface geometry. However,
these models—and their numerical solution procedures—are complicated by
the fact that the interfaces can merge or break up, or form junctions and
more complicated networks. It is challenging to devise models and associated
numerical algorithms that are simple, yet robust enough to capture such
topological changes. Our focus here is on a variety of novel ways of describing
interface motion that meet this challenge, and which can be unified through
the idea of convolution-thresholding.

While investigating the problem of evolving surfaces with junctions, Mer-
riman, Bence and Osher [22, 23] developed the diffusion-generated motion
by mean curvature algorithm which is the focus of Section 3. This simple
algorithm automatically evolves surfaces with a normal speed equal to mean
curvature without ever directly computing the mean curvature. Topological
changes such as merger and breakage are automatically handled without any
special algorithmic procedures. Accurate, efficient discretizations are possible
using adaptive resolution and fast Fourier transform techniques [32]. Finally,
and perhaps most remarkably, the algorithm extends directly to the motion
of triple point junctions and arbitrary networks of surfaces [22, 23, 21, 31].

Independent of the work on diffusion-generated motion, a variety of in-
teresting related methods have arisen in cellular automata modeling. See
Section 5. Of these models, the “threshold growth dynamics” of Gravner
and Griffeath were among the first to be rigorously analyzed [12]. In thresh-
old growth dynamics, an unoccupied site of the lattice becomes occupied if
a certain proportion of its neighbors are occupied, while occupied sites are
never vacated. Although simple, these automata rules generalize in a natural
way to a variety of systems arising in developmental biology and excitable
media.

Another well-known class of models for evolving interfaces are the Ginzburg-
Landau (or more generally the reaction-diffusion or phase field) Partial Dif-
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ferential Equation (PDE) models. These models typically represent the inter-
face as a rapid transition layer in some state—or “phase”—parameter which
evolves by a (strong) reaction (weak) diffusion equation. In such a system,
the state is driven to the nearest equilibrium value of the reaction, except in
the thin transition layer in which the diffusion dominates. In the asymptotic
limit of infinitely strong reactions, these fronts shrink to ideal surfaces that
move by mean curvature or other various geometric motion laws.

Underlying each of these models are the two processes of local averaging
(or diffusion) and thresholding (or projecting to a discrete set of values)
applied to a representing function for the surface of interest. This can be
abstracted and generalized to the convolution-thresholding motion described
in Section 4. In essence, a set (and thus its bounding surface) is evolved
by convolving its characteristic function with an averaging kernel and then
thresholding to recover an updated characteristic function. Generalizations
for multiple kernel functions or more complicated thresholding schemes are
clearly possible. These general convolution-thresholding methods provide a
natural intermediate model between cellular automata and PDEs—it turns
out they can simultaneously achieve the long length scale limit of automata
and the short length scale limit of reaction-diffusion PDEs, both of which
are difficult limits to analyze theoretically or investigate numerically.

The outline of the paper follows. In Section 2 we review the standard
Huygens’ principle and its generalizations. Section 3 describes the diffusion-
generated motion by mean curvature algorithm and discusses its discretiza-
tion. In Section 4, we show how these methods can be generalized to give
convolution-thresholding motion. This section also provides an overview of
the class of obtainable motion laws, discusses fast discretization methods
and reviews some interesting related methods. Section 5 describes threshold
dynamic models and related automata arising in developmental biology and
excitable media applications. It is also shown that convolution-thresholding
methods arise naturally as the fine grid limit of these automata and that
the fast discretizations developed for convolution-thresholding motion once
again apply. In Section 6, we compare convolution-thresholding motion and
phase field methods and review a recent convolution-thresholding method for
evolving filaments which can be motivated as a formal splitting for the com-
plex Ginzburg-Landau equation. A closely related method for the multiscale
treatment of images is also reviewed here. Finally, Section 7 concludes with
a short summary and a description of some of the interesting open problems
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Figure 1: Huygens’ principle

related to convolution-thresholding methods for interface motion.

2 Huygens’ Principle

In this section, we review Huygens’ principle constructions for both curvature-
independent and curvature-dependent motions of interfaces. Later sections
will show how these intuitive, geometrical methods are precisely a special
case of convolution-thresholding methods.

2.1 Huygens’ Principle for Constant Normal Velocity

The classical Huygens’ principle is a geometric construction for moving a
curve (in 2-D, or in general a codimension 1 surface) with a constant normal
velocity, c¢. The principle states that the evolved curve at a time At can be
obtained from the initial curve by drawing discs of radius r = ¢At which are
centered on the initial curve. The forward envelope of these discs is the curve
at time t = At.

For our purposes, it is more convenient to draw discs of radius r = cAt,
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updated curve

Figure 2: Huygens’ principle for a curvature-dependent motion.

centered so they are entirely on one side of the curve and tangent to it. The
locus of the disc centers forms the new curve position after a time t = At.
See Figure 1.

2.2 Huygens’ Principle for Motion by Mean Curvature

The classical construction can be modified to produce a motion where the
surface normal velocity is proportional to the local mean curvature. Instead
of the usual procedure, position each disc so that exactly half its area lies
inside the curve to be evolved, and then take the locus of all disc centers as the
new curve, as illustrated in Figure 2. This is just a slight modification of the
standard Huygens’ principle shown in Figure 1, yet it yields a qualitatively
different type of motion.

Clearly the most curved portions of the interface are displaced the most
by this modified process, so that it induces some form of curvature-dependent
motion. A simple geometric analysis (see Figure 3) shows that if the local
radius of curvature of the curve is R, and we position a disc of radius r < R
so that it is cut exactly in half (by area) by the curve, then the disc center

r

is displaced normal to the curve by a distance d ~ . We would like this
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Figure 3: The geometry of the Huygens’ principle for motion by mean cur-
vature.

displacement to represent one time step of motion by mean curvature, so we

want d = v, At, with v,, = k = %. This will indeed be the case as long as

r ~ v/At. Note this also explains why this geometric procedure (Huygens’
principle for mean curvature) uses discs of radius r ~ v/At, while that for
constant motion uses discs of radius r ~ At. (This distinction has practical
importance for the convolution based numerical implementations discussed
later, since more spatial resolution is required to treat the smaller discs of
the constant motion.)

2.3 Generalized Huygens’ Principles

Variations on Huygens’ principle can be obtained by using shapes other than
discs, taking the locus of designated points other than the disc centers, and
positioning the shapes fractionally outside the curve, rather than entirely
outside or half in and half out. By combining these observations, a general-
ization of the geometric Huygens’ principle is obtained (see, e.g., Figure 4)

Select an arbitrary shape (generalizing the disc of the standard
principle) and an “origin point” for the shape (generalizing the
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Figure 4: Huygens’ principle with a general shape and a non-zero fraction \.

disc center), which can be any point inside or outside the shape.
Allow the shape and its associated origin to be moved in the plane
only by rigid translation (not rotations). Given an initial curve,
everywhere possible position the shape so that a fraction A of its
total area is enclosed in by the curve. Then the updated curve is
the locus of all the corresponding origin points.

Clearly, by using nonsymmetric shapes anisotropic motions are derived and
by varying the fraction A the relative importance of the curvature component
is changed. This approach was fully developed, including explicit formulas for
the limiting surface evolution, in the recent work of Ishii, Pires and Souganidis
[18]. These and other theoretical results will be summarized in Section 4
after discussing another closely related method—diffusion generated motion
by mean curvature.
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Figure 5: Sharp corners are rapidly smoothed out by diffusion

3 Diffusion-Generated Motion by Mean Cur-
vature

The diffusion-generated motion algorithm introduced in [22, 23] is a surpris-
ingly simple procedure for approximating motion by mean curvature of a sur-
face without computing curvature. In this section we give the basic algorithm
and its extension to surfaces with multiple junctions. Later sections will show
how this procedure is another special case of convolution-thresholding. We
also present efficient discretization techniques for diffusion-generated motion
which have direct extensions to the general convolution-thresholding schemes.

3.1 The Basic Method

It is intuitively clear that if we allow a set of points to “Diffuse,” sharp
corners rapidly smooth out (e.g., Figure 5). Based on this observation, we
might expect that diffusion can be used to evolve the boundary of a set in a
curvature-dependent way.

Consider, for example, setting x equal to the characteristic function for
some initial region. We then apply diffusion to y

aX_ 2
o VX

and consider the evolution of the 1/2-level contour. Re-writing using local
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Figure 6: Local polar coordinates with origin at the center of curvature for
X.

polar coordinates with origin at the center of curvature (see Figure 6)
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we find that the motion is dominated by the radial advection and diffusion
terms. (The remaining term involving #-derivatives vanishes to highest order,
since y is locally a function of r only, independent of 6.)

Taking a radial view of the evolution (Figure 7), we find that first term
simply advects the initial profile with a speed % = k, while the second diffu-
sion term smears out the profile. Because the smearing is symmetric, how-
ever, it does not affect the 1/2-level contour. Thus we are left with an
advection-diffusion equation which advances the level set 1/2 with a speed
equal to the local curvature, k.

Using this simple intuition, an algorithm for moving an interface by mean
curvature can be constructed [22, 23]:

ALGORITHM DGM (two regions)
GIVEN: An initial region R.

BEGIN
(1) “Initialize”: Set x equal to the characteristic function for the region R.
(2) Repeat for all steps:
(a) “Diffuse”: Starting from Y, evolve y for a time At according to x; = V2x.
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Figure 7: Radial view of the time evolution. The radial advection term
advects the initial profile with a speed equal to the local curvature (dashed),
while the radial diffusion term merely contributes a smearing to the final
result and does not affect the 1/2 level contour.

“ s 1 ifx>1/2
(b) “Threshold”: xy = { 0 otherwise
END

The location of the interface is given by the boundary of the set defined by
the characteristic function y, or by the % level of the smooth x.

Notice that this procedure can be described informally as diffusing the set
for a short time, and then thresholding at the % level to obtain a new set. As
we have seen, such a diffusion will cause a curvature-dependent blurring of
the set boundary, and a formal analysis of the diffusion equation [22, 21, 23|
shows this should result in precisely motion by mean curvature. Indeed, an
interesting variety of rigorous proofs have been given to show this simple
algorithm converges to motion by mean curvature as the time step goes to
zero [6, 1, 18]. Note that the rate of convergence for smooth interfaces is first
order and that more rapid convergence is often possible using extrapolation.
See [32].

This algorithm has several remarkable properties: Motion by mean cur-
vature is obtained in any number of dimensions without ever directly com-
puting the mean curvature. Topological mergers such as pinch off, which
occur in higher dimensions, are captured with no special algorithmic proce-
dures. Note also that motion by mean curvature is a nonlinear evolution, yet
the diffusive evolution is entirely linear, with the only nonlinear part of the
algorithm being the final, trivial, thresholding step.

Perhaps most remarkable, this procedure has a direct extension to the
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motion of multiple junctions. This extension will be the focus of the next
section.

3.2 Extension to Multiple Junctions

Diffusion-generated motion has a direct extension to surfaces with multi-
ple junctions. Let the intersecting surfaces partition the domain up into
regions with characteristic functions xi, x2,..., xny. Note > x; = 1 every-
where, reflecting the partition. We independently diffuse each region—i.e.
convolve y; with the Gaussian—to obtain smoothed out characteristic func-
tions x;(At). Note that these still sum to one, by the linearity of the convo-
lution: - x;(At) =¥ K*y; = KxY. x; = K+1 = 1. Thus the smoothed out
characteristic functions still partition the domain into “fuzzy” sets. In order
to obtain a partition into geometric sets, we simply define set ¢ to be the
set on which y;(At) is greater than all the other smoothed out characteristic
functions.

This approach leads to the following algorithm for the motion by mean
curvature of multiple regions:

ALGORITHM DGM (multiple (r) regions)
GIVEN: Several regions I2;,1 < j <7 which divide the domain 2 = U R;.

1<j<r
BEGIN
(1) “Initialize”: Set each Y, equal to the characteristic function for the region R;.
(2) Repeat for all steps:
(a) “Diffuse”: Starting from x;, evolve each x; for a time At
according to % = V2.
B { 1 if x; = max {xx}
(b) “Threshold”: x; = A<k<r
0 otherwise
END

For any time ¢, the interfaces are given naturally as the boundaries of the
characteristic sets. Note that in the case of two regions, i.e. a set and
its complement, this reduces to the original algorithm for y; alone because
X2 = 1 — x1 is not an independent quantity. It remains an open problem
to prove that this algorithm converges to motion by mean curvature for the
interesting case of three or more regions.
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Figure 8: The interfaces, I';;, move with a velocity v;; = 7;;ki; + €;; and are
subject to angles 6, 65, 03.

Because the original diffusion generated motion algorithm uses a symmet-
rical x comparison, it produces symmetrical triple point junctions. To obtain
arbitrary desired junction angles a nonsymmetrical comparison can be used,
as described in [23, 21, 31]. This approach has been further generalized by
Ruuth [31] to produce a normal velocity which depends on a positive multiple
of the curvature of the interface plus the difference in bulk energy densities
for prescribed junction angles (see Figure 8). Similar to the basic algorithm,
these generalizations naturally treat topological merging and breaking and
produce no overlapping regions or vacuums. Also similar to the basic algo-
rithm, there are no rigorous results concerning these methods when multiple
junctions occur, but the numerical experiments in [30, 32, 31] demonstrate
their convergence.

3.3 Efficient Discretizations

As outlined, diffusion-generated motion is only discrete in time. We now
discuss possible spatial discretizations for the method. Most important is
that the efficient spectral methods described here have direct extension to
the general convolution-thresholding methods described in later sections.
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Figure 9: If the level set 1/2 moves less than one grid point, the front remains
stationary.

3.3.1 Finite Difference Methods

A very simple way to spatially discretize diffusion generated motion is to use
a finite difference method on a fixed grid [22, 23]|. Unfortunately, this simple
approach leads to several problems [23, 32].

In particular, the time step At must be large enough so that the motion of
the interface over each step can be resolved by the spatial discretization. For
the case of a finite difference discretization, the level set 1/2 must move at
least one grid point, otherwise the front will remain stationary (see Figure 9).
This produces the restriction that

(speed of motion of the interface) x At > grid spacing
kKAt > h (1)

which is prohibitively expensive whenever x is small.

Furthermore, even when this restriction (1) is satisfied throughout space,
an extremely fine grid may be needed to achieve the desired accuracy. Con-
sider, for example, the evolution of a smooth surface (i.e., no junctions or
self-intersections) according to diffusion-generated motion. Here, a simple
Taylor series expansion can be used to demonstrate that an O((At)?) error
in the position of the front is generated at each step [30]. If the function x is
represented using a fixed grid then each thresholding produces an error which
is comparable to the mesh spacing. IL.e., each thresholding step produces an
O(h) error in the position of the front. To preserve the overall accuracy of
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the method we must take h = O((At)?). Using a uniform mesh, this leads
to O((x;)*") grid points and O((z;)??) operations per step in d dimensions,
which is often impractical even for simple two dimensional applications.

As we shall see in the next section, these inefficiencies are easily overcome
using adaptive resolution and fast Fourier transform techniques.

3.3.2 A Spectral Discretization

The standard discretization of diffusion-generated motion can be expensive,

even for simple two dimensional applications. Fortunately, much faster re-

sults can be obtained using a simple spectral method on adaptive grids [32].
To begin, a method is needed to solve the heat equation,

Xt = V2)(

repeatedly over intervals of length A¢. This is accomplished using a Fourier
series. Notice that y is initially discontinuous so it will contain a high fre-
quency error from truncating the Fourier series. However, we only require
x after a time At. After a time At, high frequency error modes have been
damped out. Since the problem is linear, the various modes do not interact—
thus there is never a need to approximate the high frequency components of x.
Thus a Fourier series is an excellent choice, because far fewer basis functions
are required than might otherwise be expected.

The thresholding step is also straightforward. Using the usual orthog-
onality conditions, it is easy to show that the Fourier coefficients of the
characteristic function after thresholding are

Cik = //exp(—Qm’ja:) exp(—2miky) dA (2)
R,

where .

is the approximation to the phase we are following.
To complete the discretization, the integrals (2) must be evaluated. These

are accurately and efficiently treated using the quadrature methods described
in [32]. Briefly,
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Figure 10: Integration is carried out by dividing the domain into squares.
Contributions from all but the finest regions can be evaluated exactly.

e If R(t) is a square, the integration step is carried out exactly. More
general regions are treated by dividing the domain into small squares
(see, e.g., Figure 10) and summing the contributions from each. At the
finest level, the contributions to the Fourier coefficients are approxi-
mated using a quadrature over triangles.

e During mesh refinement, a large number of unequally spaced function
evaluations are required (see, e.g., Figure 10). Because the FFT re-
quires an equally spaced grid, fast implementations use a recent un-
equally spaced fast Fourier transform method [2]. This method is also
used for the rapid evaluation of the Fourier sums that arise in the
quadrature steps of the algorithm.

We now consider how this discretization compares with the usual finite dif-
ference approach.

3.3.3 Comparison

There are several reasons why this spectral discretization is preferred over
finite difference discretizations of diffusion-generated motion [32]. These rea-
sons are outlined below.
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1. A lattice based method must satisfy (1) globally, or part of the front
may erroneously remain stationary. By recursively refining near the in-
terface and interpolating at the finest cell level, the spectral discretiza-
tion eliminates this restriction.

2. An unwanted anisotropic component to the motion is generated when-
ever a regular lattice is used since the front must travel an integer
number of cells per time step. No such restriction occurs with the
spectral approach since interpolation is used to locate the front at the
finest cell level.

3. A lattice based method produces an irregular error which makes the
construction of higher order accurate, extrapolated results impracti-
cal. Because the spectral discretization uses interpolation to locate the
front at the finest cell level, the error arising from the thresholding
step is relatively small. In many instances, this makes an accelerated
convergence to the limiting motion law possible using Richardson ex-
trapolation in the time step size. See [32] for further details.

4. Far fewer operations are required to obtain an accurate representa-
tion of the front using the spectral discretization. Here, the proposed
method requires only

O(é log?(At))

operations per step to preserve the overall accuracy of the method [32].
This compares very favorably to result for smooth curves O(1/At?)
which was derived in Section 3.3.1.

In practice, finite difference or pseudo-spectral methods on a uniform grid
are often adequate for obtaining crude but illustrative results (e.g, [22, 21, 23,
35]). However, when accurate solutions are sought (< 3% relative error) the
spectral discretization is preferred. Indeed, a finite difference discretization
on a uniform grid often requires hours of computation to obtain the same
relative error that a spectral discretization obtains in a few seconds. See
[32, 34] for some sample calculations illustrating this property.
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4 Convolution-Thresholding Motion

We now show how the general framework of convolution-thresholding motion
of surfaces unifies the geometric Huygens’ principles with the analytic method
of diffusion-generated motion by mean curvature. This section also gives
recent generalizations of the basic method and discusses their discretization.
We also review related methods that have appeared in the literature.

4.1 Huygens’ Principle as Convolution-Thresholding

The Huygens’ principle described in Section 2 is a geometric technique for
moving a curve or surface. As the first step towards generalization, this
geometric construction can be translated into an analytic form. We represent
curves as the boundaries of regions, and in turn represent regions by their
characteristic functions, i.e. functions that are 1 on the region, 0 off the
region. We represent the discs (or any other shape) used to advance the
front by their characteristic functions as well. Suppose the original region
has characteristic function x, and let K be the characteristic function for the
motion generating shape, scaled so that it has unit mass. Let % denote the
convolution,

K@) = [ @K (E - )7 (3)

Then for constant normal motion, the updated region in Huygens’ construc-
tion can be defined as

{Z: x* K(¥) >0} (4)
and the updated curve is the boundary of this region. Similarly, for motion by
mean curvature the updated region in Huygens’ construction can be defined
as

1
{f:x*K(f)>§} (5)
For example, for the Huygens’ principles using discs in 2-D, the kernel is the

(normalized) characteristic function for a disc of radius r, centered at the

origin,
1

K@ ={ 7 , 0

where r ~ v/ At for motion by mean curvature, or r ~ At for constant normal
motion.

if |z <r
otherwise
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Thus, the geometric Huygens’ principle is equivalent to the analytic pro-
cedure of convolving the characteristic function for the original region with
an appropriate kernel function, and obtaining a new characteristic function
from this via thresholding.

4.2 Diffusion-Generated Motion as Convolution-Thresholding

The diffusion-generated motion [22, 23] can also be viewed as a convolution-
thresholding algorithm. If the initial surface bounds a region with character-
istic function x, then the solution to the linear diffusion equation at a time
At later is y * K, where K is a Gaussian of width v/At,

K@) = K@) = o o0 (-1 17F)

and the updated surface is the boundary of the region
S !
{x:x*K(x)>§} (7)

Indeed, any positive, radially symmetric kernel may be used in place of
the Gaussian to obtain a convolution generated mean curvature motion, as
was pointed out by Merriman, Bence and Osher [22] and proven rigorously
by Ishii [17]. Thus diffusion plays no deep special role in generating the
motion by mean curvature, and probably obscures the greater significance
of the convolution. The main value to the diffusion PDE description of
the convolution process is that it allows a convenient formal analysis, as
was indicated in Section 3, and it highlights the connection with phase field
models, as described in Section 6.

4.3 Convolution-Thresholding Motion

Based on the update rule (4), it is clear that we are interested in more general
forms of convolution generated motion. In particular, it is natural to consider
the following generalizations of (7):

1. Allow different convolution kernel functions, K.
The method formally allows arbitrary kernel functions, and asymmetri-
cal kernels can be used to produce anisotropic motion laws, as originally
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suggested in [22]. Without loss of generality, we shall assume that the
kernel has been normalized to satisfy [ K (Z)dZ = 1.

2. Allow a general threshold, A, in {Z: x * K(Z) > \}.
This provides a continuum of convolution-thresholding methods pa-
rameterized by A € [0,1) with A = 0 corresponding to the standard
Huygens’ principle for constant motion (see [33]), and A = % corre-
sponding to motion by mean curvature. In general, A can also be
allowed to depend on other quantities. For example, a variety of v, =
a + bk diffusion-generated motions can be obtained with A = % +ev/AL
[18, 21, 31], so A = A(At) is a useful form. More generally, A may be se-
lected locally as a function of the normal direction defined by the level

sets of K % y to achieve an interesting variety of anisotropic motions
[33].

These generalizations produce semi-discrete methods—i.e., continuous in
space but discrete in “time”. To determine the corresponding continuous
dynamics, we must somehow introduce a time step and clarify what it means
to take the small time step limit (assuming such a limit exists). Intuitively,
the time step is determined by the effective size of the support of K, since
the larger the effective support of K, the further its convolution will move
the set boundary. Thus the small time step limit is obtained by scaling
down K in a suitable fashion. More precisely, let us scale the fixed kernel
K (Z) by the mass preserving form K (Z/r)/r¢, so that the effective radius of
its support scales like » < 1. By convolving this scaled kernel with y and
thresholding the result at A, the set boundary is displaced by an amount that
is some function of r, s(r). If we demand that in the limit of small r this
displacement be one time step of some limiting motion law, s(r) = v, At,
this fixes the relation between the size of the kernel, r, and the time step,
At. Note, in particular, that if K is a Gaussian kernel with effective support
of size r, this general procedure yields At ~ r2. This is precisely the scaling
relation between kernel size and time step used in the diffusion-generated
case discussed above, although there it can also be motivated by the simple
fact that diffusion for a time At will smear (and thus move) the set boundary
over a distance r ~ V/At.
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4.4 Obtainable Motion Laws

It is natural to ask what motion laws arise from convolution generated motion
and how the radius of the kernel scales with At.

In the case where K is non-negative and A = 0, convolution generated
motion reduces to Huygens’ principle for the curvature independent motion
described in Section 2. Notice in particular that if we assume that each
update corresponds to one time step of length A¢, then A" and hence K have
radii which scale like At.

Another interesting case occurs in two dimensions when A = 1/2 and K is
the scaled characteristic function of a symmetric region N (i.e., N' = —N).
If we define () to be the polar representation of the boundary of N, then
it is easy to show that a leading order approximation of the displacement
of a smooth initial boundary is r?(#)x/6 [33]. Thus general “anisotropic
curvature motions” of the form

vy, = b(0)K (8)
are obtained simply by taking
r(6) = \/6b(0)At.

Similar to the case of constant motion, this algorithm also has a simple
geometric version [33]:

Using only translations, place copies of N so that exactly half
of their area lies inside the original region. The locus of shape
centers forms the boundary of the updated set.

A combination of these two types of motion can be obtained by varying
the threshold, A. This class of methods has been studied in the recent and
comprehensive work of Ishii, Pires and Souganidis [18] for the case where A is
a constant or A = A(At). They give explicit formulas for the limiting surface
normal velocity v, in terms of various moments of the kernel function, in
any number of dimensions. Moreover, they also give rigorous proof that the
convolution generated motions converge to their stated v,, motion laws in the
limit as At — 0.

One notable implication of their results is that it is impossible to obtain
many interesting curvature-dependent motions in three dimensions with this
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class of generalizations®. For example, consider motion by weighted mean
curvature (e.g., [16, 38]),

0? 0?
vn=(7+—72)'€1+(7+—72
005

o s )

where 7 represents the anisotropic surface energy, {r;} are the principal
curvatures of the surface and {#;} are the associated local angles made by the
normal vectors along the principle circles of curvature. Such motions can only
be obtained if v is constant—in which case the original diffusion-generated
motion algorithm applies. The origin of this limitation in more than two
dimensions can be understood by a straightforward geometric analysis [33].
Briefly, when positioning a non-spherical Huygens shape to be some fraction
inside the surface, the principal curvatures of the surface have independent,
and generally different, influences. Thus the motion cannot depend only on
the symmetrical combination k = (k; + k2), and motion laws of the form
b(n)k with nonconstant b are not possible. The same is true for other forms
that require constrained combinations of principal curvatures, such as the
surface tension weighted mean curvature.

4.5 Extensions

To produce more general motions, A may be allowed to depend on other
quantities. For example, in [33] A is defined locally as a function of the
normal direction to obtain motions in two dimensions of the form

v, = a(f) +b(8)x

where b is non-negative and continuous.

Even more generally, multiple-kernel algorithms may be desired since
these provide a convenient way to generate interface velocities that are un-
obtainable with single kernels (e.g. anisotropic mean curvature motion in
more than two dimensions). In this approach, the characteristic function is
convolved with multiple kernels, y * Ky, x * Ko,...,x * Ky, and these are
combined in some convex combination or differencing combination prior to

3Note that the converse is also true. It is not possible to approximate many interesting
convolution thresholding combinations using finite motion laws. See Section 5.4 for an
example.
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the thresholding stage. For example, suppose that we wish to evolve a surface
according to a normal velocity

vp = b(R)K (10)
where 0 < byin < b(0) < bipae- Set K, equal to the heat kernel for
Xt = bmin VX
and K,,,, equal to the heat kernel for
Xt = bmaz VX
for a time step size of At. Thresholding the convex combination
(1 = e)x * Kmin + X * Kimag

at the level 1/2 then produces a velocity proportional to mean curvature for
any constant 0 < ¢ < 1. (This observation follows from Ishii [17], since the
effective kernel is positive, symmetric and decreases exponentially quickly
away from the origin.) In fact, it is easily shown (cf. [21]) that a normal
velocity bk is obtained if

b— bmm
b— bmm + V bminbmaw + b\/ bmin/bmam '

To produce motions of the desired form (10), we simply select b = b(n) locally
as a function of the normal direction of the level sets of x *« K. See Figure 11
for an example.

As a final observation, nonlocal choices for A also produce interesting
flows. For example, volume preserving motion by mean curvature [3, 29,
ie. v, = Kk — Kk where k is the surface average of the mean curvature, is
realized by selecting the level surface of x * K that encloses the same vol-
ume as the original set in diffusion-generated motion, instead of the % level
[30]. Convergence of the three procedures discussed in this section have been
demonstrated numerically, but not proven analytically. Given its simplicity,
it would be especially interesting to obtain a proof for the volume preserving
diffusion generated motion by mean curvature.

CcC =
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t = 0.00000 t = 0.00200
t = 0.00375 t = 0.00575

Figure 11: A normal velocity v, = (1 + \/n? +n3 + sin(mn))k
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4.6 Numerical Approximation

Perhaps the most obvious method for approximating convolution generated
motion is pseudospectrally. Using this approach, functions are represented
by their values on a regular lattice of grid points. This makes the threshold-
ing step trivial since it can be carried out pointwise. The convolution step
is also straightforward since it reduces to a multiplication in Fourier space
using Fast Fourier Transform (FFT) methods. Unfortunately, however, this
simple approach is rarely adequate due to the strong grid effects discussed
in Section 3.3.3. See [34] for an example.

For fast, accurate results, the discretization given in Section 3.3.2 may
be used. Briefly, the characteristic function for the initial region and the
kernel are approximated by Fourier tensor products. Multiplying in Fourier
space then gives a simple estimate for the convolution product. The Fourier
representation of the characteristic function for the updated region is then
determined using an adaptive quadrature method rather than a pseudospec-
tral method. Note that the convolution step acts as a filter, removing high
frequency components. Since this convolution step is linear, the different
Fourier modes do not interact and there is never a need to treat the highest
frequency components. Thus, an excellent approximation is obtained using
fewer Fourier modes than might otherwise be expected. See [34, 33] for some
examples and full details.

4.7 Related Methods

The “spatially continuous automata” of MacLennan [19] is another indepen-
dent development that is similar to diffusion generated motion. It also arises
from cellular automata, again as a method intended to capture the smoother,
long wavelength aspects of automata patterns. MacLennan achieves this sim-
ply by taking continuous versions of the spatially discrete aspects of cellular
automata evolution. The resulting method consists of taking a continuous
initial data function, evolving for a discrete time step by convolving it with
a continuous convolution kernel, and then applying a continuous pointwise
sharpening step that tends to undo some of the blurring of the convolution
step. This procedure is quite similar to diffusion-generated motion (and the
general convolution-thresholding motion we present in this section), except
for one minor but crucial distinction. The simple asymptotics that yield
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motion by mean curvature in diffusion-generated motion arise precisely be-
cause the initial data is the discontinuous characteristic function, and because
the sharpening step is discontinuous, replacing the blurred out characteris-
tic function by a new discontinuous characteristic function. Replacing these
by continuous analogues destroys simple sharp interface motions in the first
few time steps. Thus, these spatially continuous automata do not tend to
yield well behaved limiting interface motions amenable to asymptotic and
rigorous analysis, although they do produce an interesting and varied class
of evolutions.

5 Connection to Cellular Automata Models

Cellular automata are discrete dynamical systems. They consist of a lattice
of sites, each of which may take on a finite number of “states”, or values.
The site values evolve in synchronous, discrete time steps according to an
evolution rule that specifies the updated value in terms of the current values
at neighboring sites. [44]

In this section we review a particularly fundamental class of automata
models—the threshold dynamics—and discuss some of their mathematical
properties. As we shall see, convolution-thresholding motion arises naturally
as the fine grid limit of these automata, giving a numerically and analytically
tractable link between cellular automata models and the smooth features of
pattern dynamics. We conclude this section with extensions to models for
pattern dynamics in developmental biology and excitable media.

5.1 Connection to Threshold Dynamics

An important class of automata can be obtained by imagining each neighbor’s
contribution to be a simple “vote” for or against a certain state value of the
site in question; any number of affirmative votes above a certain threshold
will yield that outcome. For example, consider a simple voting automaton
where there are two states, 1 and 0. A sum of the cell’s own vote and that
of its 8 nearest neighbors is formed. Where this sum is greater than or equal
to the threshold value A the cell is assigned state 1, and state 0 elsewhere.
By denoting the state of cell (j, k) at time step n by 7k, we obtain a simple
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Figure 12: Threshold dynamics can be viewed as a method for interface
motion.

analytic representation for the automata model,

cnit = ] L Y O e 2 A
ik 0 otherwise

where A represents the threshold value.

More generally, each vote can be assigned some weight. Letting N C Z2
be the neighborhood of interest and W be the matrix of weights, we obtain
the update rule for threshold dynamics,

an-i-l _ { 1 if Ej',k'eN Wj/,k:C’?_j,,k_k, Z A (11)

J 0 otherwise.

Note that the function C' is precisely the characteristic function of a set
on the lattice, and the combination appearing above is precisely the discrete
convolution C'x W with the discrete kernel function W. Thus these thresh-
old automata can be viewed as discrete versions of the convolution-threshold
method. Moreover, they can also be viewed as discrete approximations to
continuum convolution-threshold models, and this is a convenient framework
for understanding the long wavelength aspects of automata pattern forma-
tion, as described in the next sections.

5.2 Connection to Limiting Shapes

A natural and very interesting problem is to find the limiting shapes for
threshold dynamics and related automata models. In an early paper, Packard
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and Wolfram [25] found that

Most two dimensional patterns generated by cellular automaton
growth have a polytropic boundary that reflects the structure of
the neighborhood in the cellular automaton rule. Some rules,
however, yield slowly growing patterns that tend to a circular
shape independent of the underlying cellular automaton lattice.

In order to derive a more detailed, rigorous theory, Gravner and Griffeath
[12] developed and studied a class of set evolution algorithms of a somewhat
similar form to the threshold dynamics. In these “threshold growth dy-
namics” an unoccupied site becomes occupied if a certain proportion of its
neighbors are occupied, while occupied sites are never vacated. The main
goal of this work was to prove that such discrete evolution rules lead to a
certain asymptotic limiting shape for the evolving set as time (the number
of iterations) goes to infinity. Gravner and Griffeath accomplish this in full
rigor and generality, both on a continuum and a lattice.

In continuum terms, and from the viewpoint of convolution-thresholding
motion as developed in Section 4, we would say they were analyzing a dis-
crete approximation to a certain continuum convolution generated motion. If
the continuum convolution kernel is known, then anisotropic surface normal
velocity law v, = a(n) could be determined from the general kernel-velocity
relations obtained in [18]. From this normal velocity, the limiting shape fol-
lows by the classical geometric Wulff construction [24]. As an aside, note
that at the continuum level it is a classical observation about crystal growth
(dating back to Gross in 1908) that such anisotropic velocity laws result in
well-described limiting shapes as t goes to infinity, and that the geomet-
ric Wulff construction on the function v(n) yields the corresponding shape.
However, rigorous proofs of this did not appear until recently. A simple di-
rect proof for the standard continuum formulation, as well as more detailed
discussion and references, are contained in a work of Osher and Merriman
[24]. See also Ishii, Pires and Souganidis [18] for recent results about the
asymptotic shape of fronts propagating by threshold dynamics and Gravner
and Griffeath [13] for some simple growth rules with more complex iterates
which can nevertheless be determined by a combination of computer experi-
ment and exact recursion.
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5.3 Relation to Finite Grid Effects in Automata

Notice that threshold dynamics can be viewed as a method for evolving in-
terfaces since the boundary between state 0 and state 1 represents a crude
interface that is evolved by each update step of the algorithm (see, e.g., Fig-
ure 12). An interesting question is how to select an appropriate neighborhood
and weight values in order to model a desired front motion.

In early cellular automata, a neighborhood of nearest neighbors on a
uniform lattice was selected. This choice has the advantages of speed and
simplicity but is inadequate for modeling many interesting natural phenom-
ena. In particular, rules which use these small neighborhoods are unable
to model the effects of curvature on the speed of propagation [15, 42]. The
reason for this can be understood by referring back to the section on the
Huygens’ principle for mean curvature motion, where we showed that the
size of the neighborhood must scale like O(v/At), which is much larger than
the O(At) scale neighborhoods required for constant normal motion. These
simple automata also add grid based anisotropy to the front motion [36]. See
Figure 13 for an excitable automaton with a strong grid based anisotropy.

In an attempt to reduce grid effects, several modifications of cellular au-
tomata such as random grids, stochastic local functions and asynchronous
evaluations have been designed. Based on extensive numerical experiments,
Schonfisch [36] found that random grids are the most useful of these, but
that even these randomized methods have deficiencies from a theoretical or a
practical point of view. In particular, fluctuations in the front occur for ran-
dom grids and these “fluctuations become more prominent for higher values
of threshold” [36]. Thus, while randomized methods do produce a marked
improvement in the isotropy of automata, they are still not adequate for
many problems of practical interest.

Alternatively, reduced grid effects and an improved curvature contribu-
tion can be obtained by refining the lattice and taking larger neighborhoods
[12, 15, 39, 40, 11, 9, 10, 8, 20]. In the limit as the lattice is refined and larger
and larger neighborhoods are used the summation step leads to a convolution

CxW(@) = [ C@W -y

Rd

where C' is the characteristic function for the initial region in the fine grid
limit, and W : RY — R is the fine grid, large neighborhood limit of the
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>

PN

Figure 13: Spiral wave in the excitable automata model [5]. There are six
states, 0 through 5. If any cell is at state 5 it is set to state 0 (resting).
Any other excited or refractory (i.e., nonzero) state is incremented by 1. If a
cell is resting and one of its four neighbors is excited (state 1), then the cell
becomes excited, otherwise it remains at rest. White corresponds to state 0
and black to state 5.

discrete convolution function. Thus in the limit relevant for eliminating lat-
tice effects from the automata, threshold dynamics becomes convolution-
thresholding (4).

Note that this means that the limiting motion can be accurately and
efficiently treated using the methods outlined in Section 4.6. Alternatively, it
is possible to approximate the sum pseudospectrally [34] or with a number of
one dimensional convolutions [15, 39, 40, 11, 9, 10]. However, these methods
use a pointwise thresholding so each step displaces the front a distance which
is comparable to the mesh spacing. This leads to strong grid effects that are
often unacceptable in practical applications.
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5.4 Application to Developmental Biology

Threshold dynamics have arisen in a variety of disciplines in developmental
biology [5]. For example, Young devised an interesting model of vertebrate
skin patterns which is based on local activation and inhibition [45]. This
model assumes that cells are in one of two states — differentiated (colored)
and undifferentiated. Each differentiated cell produces two diffusive chemi-
cals: a short range “activator” and a longer range “inhibitor”. The activator
stimulates the differentiation of nearby undifferentiated cells and the inhibitor
stimulates nearby differentiated cells to become undifferentiated. The com-
bined effect of these two chemicals is modeled as the weighted difference of
concentrations.

To discretize this continuum model, Young uses an automaton. The con-
volutional form of Young’s automaton is easily derived [34]. Simply set

x:R'—> R

equal to the characteristic function for the differentiated region, €2, and define
the updated region, 2"V, to be the set

Q" = {7y« K(7) > 0}

for the kernel function, K. The kernel K is not refined with At since the
time evolution of the model is naturally discrete.

A variety of patterns are possible by varying the threshold, the size and
symmetry of the neighborhood and the relative weights of the activator and
inhibitor [45]. For example, the steady patterns given in Figure 14 arise
from a kernel that represents the difference of two symmetrical Gaussian
distributions. Stronger contributions of either activator or inhibitor tend
to generate spotty patterns, while nonsymmetrical kernels can produce in-
teresting striped patterns [45]. Note that solutions to this convolution-based
model are efficiently obtained using the discretization methods of Ruuth [32]:
Only 128 x 128 basis functions were required to obtain the steady patterns
in Figure 14 while a lattice of 2048 x 2048 grid points are required using an
automaton-based discretization. See [34] for further details.

It is interesting to note that similar convolution-thresholding schemes
have also arisen in neural models for the visual cortex. For example, Ringach,
Sapiro and Shapley develop a convolution-sharpening model for the study
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Figure 14: Isotropic pattern formation after 100 steps starting from a ran-

dom checkerboard pattern. In this case, the kernel consists of the dif-
ference of two Gaussian distributions: K(z,y) = 22 exp (—2500|Z|?)) —

120 o (— 120 ).

of simple cells in the primary visual cortex of cats and macaque monkeys
[27]. Note, however, that these authors seek solutions to the interesting
inwverse problem of determining a kernel function, based on experimental
input image sequences and output spike trains. In particular, they propose
a new subspace reverse correlation technique which has several advantages
over standard white noise techniques, including an improved signal to noise
ratios, increased spatial resolution, and the possibility to restrict the study
to particular subspaces of interest. See also Swindale for a related model for
generating patterns of ocular dominance in the visual cortex [37].

5.5 Application to Excitable Media

In the biological and physiological literature, the best-known examples of
cellular automata are the excitable media [5]. In an excitable system, a
sufficient stimulus (i.e., above some threshold value) leads to a large response
followed by a period of recovery to a stable rest state. An excitable medium is
a spatially distributed excitable system coupled in such a way that excitation
can provoke excitation in neighboring regions. Note that these systems often
experience a recovery or refractory period during which the medium is unable
to be re-excited regardless of the size of stimulus. Examples of excitable



5 CONNECTION TO CELLULAR AUTOMATA MODELS 34

media arise in diverse physical, chemical and biological systems including
models for nerve cells, muscle cells, cardiac function, developmental biology,
chemical reaction and star formation. See [41, 5, 39, 43| for further details
and references.

In early cellular automata models for excitable media, update rules were
based on the values in a neighborhood of nearest neighbors. Because this
choice produces waves which propagate at a speed of one cell per time step,
several serious shortcomings occur [42, 9]. The most serious of these are
[40, 15]:

1. The speed of propagation does not depend on the extent of recovery of
the medium.

2. The speed of propagation does not depend on the wavefront curvature.
3. Unwanted anisotropy is added to the front motion. See, e.g., Figure 13.

In order to treat the first shortcoming, more recent automata select
threshold values according to the recovery of the medium [15, 39, 40, 11,
9, 10, 8, 20]. Averages over large neighborhoods are used in an attempt to
reduce unwanted anisotropy and to obtain an approximation to the curvature
component of the motion [15, 39, 40, 11, 9, 10, 8, 20]. Typically, this aver-
aging step is carried out either directly [8, 20] (which is slow but general),
using a number of one dimensional convolutions [15, 39, 40, 11, 9, 10] (which
is efficient but specialized) or pseudospectrally (which is efficient and general
— see [34]).

Consider, for example, the excitable automata introduced in Gerhardt,
Schuster and Tyson [11, 9, 10], Weimar, Tyson and Watson [39, 40] and
Henze and Tyson [15]. In these automata, update rules are chosen to mimic
the dynamics of a two variable system of reaction-diffusion equations,

1
% = Ef(u, v) + D, V?u
% = g(u,v) + D,V

where € is a small parameter and f(u,v) and g(u, v) specify the local kinetics
of the system. Note that the scalar u (the excitation variable) changes on
a timescale which is much faster than the scalar v (the recovery variable).
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To derive the corresponding automaton model, the reaction-diffusion sys-
tem is “split” in a non-convergent way into four steps which are carried out
sequentially (see [40, 34] for details):

1. The excitation variable is diffused.

2. The diffused excitation variable is thresholded to 0 (resting) or 1 (ex-
cited) according to the value of the recovery variable, i.e., A = A\(v).

3. The recovery variable is evolved according to the local kinetics.
4. The result from Step 3 is diffused to give the updated recovery variable.

Finally, the discretization is completed by representing v and v by their
pointwise values on a regular lattice.

The advantages of this automaton over earlier models are clear. Since
large neighborhoods are used, the motion of the wavefront will exhibit fewer
grid effects (i.e., reduced anisotropy) and will have an improved dependence
on curvature. Furthermore, the wavespeed will depend on the extent of
recovery of the medium since thresholding is carried out according to the
value of v. Indeed, simulation results reported for FitzHugh-Nagumo kinetics
[15] and the Oregonator model [40] agree well with PDE simulations for the
period, wavelength and motion of the tip of the spiral wave for a wide range
of parameters. When compared to PDE simulations, the automata model
has the practical advantage that it ignores the details of the fast kinetics
so that “the time step in the cellular automaton can exceed that in PDE
simulations by 1 or 2 orders of magnitude” [15].

Note that discretizations which use a pointwise thresholding should be
avoided because this type of thresholding displaces the front a distance which
is comparable to the mesh spacing. Fortunately, an improved discretization
is easily obtained [34]. Steps 1 and 2 above are trivially treated using the
discretization methods of diffusion-generated motion (see Section 3.3.2). The
evolution of the recovery variable is similar, except that we must use Gaussian
quadrature rather than exact integration to evaluate the Fourier coefficients.
Similar to automata based discretizations, this approach allows for very large
time steps (relative to PDE simulations) since it ignores the details of the fast
dynamics. Relative to automata based discretizations, however, it is clear
that this spectral discretization gives a much more accurate treatment of the
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front since it recursively refines near the interface and interpolates at the
finest cell level. This allows for accurate estimates of quantities defined on
the interface, and is particularly valuable for computing curvature dependent
motions. Furthermore, discontinuities and unwanted anisotropy in the front
motion are eliminated since interpolation is used to locate the front at the
finest cell level. Finally, this discretization has the benefit that A¢ can be
selected independently of other parameters, unlike the methods proposed in
[15, 39, 40, 11, 9, 10]. See Figure 15 for an evolving spiral wave which was
computed using these fast methods.

6 Connection to Phase Field PDEs

As we have seen in Section 4.2, diffusion-generated motion by mean curvature
is a special case of convolution-thresholding. We will show in turn how the
diffusion-generated motion methods are related to phase field models, and
thereby establish the general connection between convolution-thresholding
and phase field PDE models. We also show how this connection can be used
to motivate a recent approach for evolving filaments with a normal speed
equal to curvature. A closely related method for evolving orientation vector
fields is also reviewed.

6.1 Phase Field and Diffusion-generated Motion

The diffusion-generated motion procedure of alternately diffusing and thresh-
olding is reminiscent of an operator splitting approximation of the (real-
valued) Ginzburg-Landau equation,

uy = Viu — %u(u2 —1).
€
In this PDE model, a reaction front of width ¢ develops, separating large
regions of constant equilibrium states for the reaction, i.e. where u ~ 1
or u &~ —1. In the asymptotic limit ¢ — 0 of a strong reaction and weak
diffusion, the reaction front moves by mean curvature [7]. At a formal level,
by splitting the process into separate time steps of diffusion and reaction,
and driving the reaction step to equilibrium (i.e. set u(Z) to be the closer of
the equilibrium states —1 and 1) we arrive at the diffusion-generated motion
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Figure 15: Excitation variable for two interacting spiral waves. All parame-
ters are set according to Figure 12.
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by mean curvature algorithm. Thus (as Atz — 0) in this formal time splitting
we actually achieve the asymptotic mean curvature motion of the phase field
model. Moreover, the split process is considerably simpler than the nonlinear
PDE dynamics, as it consists of just linear diffusion and thresholding, and
since there is no development of artificial small O(e) spatial length scales.
From a theoretical and computational standpoint, this phase field model
has the benefit that topological shape changes such as merger and pinch
off are treated automatically. Unfortunately, if phase field PDEs are used
in computation it is necessary to resolve the thin O(e) wide reaction zone
to obtain numerical accuracy [23]. In contrast, diffusion-generated motion
does not have this artificial small scale. Thus diffusion-generated motion has
in effect passed to the asymptotic limit of the phase-field class of models,
obtaining a simplified and more accurate evolution scheme in the process.
More generally, this suggests the formal “meta-principle” that we could
replace certain phase field PDE models whose asymptotic limit produces an
interface motion, by a diffusion-generated motion procedure that achieves
the limiting motion (in the A¢ — 0 limit) without any artificial small spatial
scales. The process would be to simply do the linear diffusion evolution on
a suitable representing function whose values are all equilibrium states, and
which is singular at the ideal interface, and then threshold by projecting
smoothed out values back to the equilibrium states of the reaction. It is
an open question as to how generally valid this meta-principle is, but as is
illustrated below for filaments, it seems to have some general validity.

6.2 The Diffusion-Generated Motion of Filaments

Interestingly, the idea of treating phase field equations in a formal split-step
manner can also be used to produce a diffusion-generated method for the
curvature motion of filaments in three dimensions (or, more generally, 1-D
filaments in any number of dimensions, or even k-D “filaments” moving in
a higher dimensional space, for example by general vector mean curvature
flow) [35].

Consider the complex Ginzburg-Landau equation

1
uy = Viu — 6—2u(|u|2 - 1)

where u(7Z,t), £ € R?, is a complex scalar and € is a small positive parameter.
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In this PDE model, the filament is given by the curve where |u| vanishes,
which is in a tube of width € outside of which |u| &~ 1. Notice that the
Laplacian term dominates in a neighborhood of width € of the filament, while
farther away the reaction term dominates (see Figure 16). In the asymptotic
limit ¢ — 0 of a strong reaction and weak diffusion, the filament moves in
the principal normal direction with a speed equal to its curvature [28].

Similar to the case of diffusion-generated motion, a formal splitting method
can be applied to the complex Ginzburg-Landau equation to obtain an algo-
rithm for evolving filaments [35]. This “Diffusion-Generated Motion by Mean
Curvature for Filaments” alternates one step of normalizing u (i.e., replac-
ing u by u/|u|, which is a natural generalization of the usual (x — \)/[x — A|
thresholding step) with a step of diffusion over a time A¢. The corresponding
algorithm evolves the filament in the Frenet normal direction to the curve
with a speed equal to curvature, and naturally captures topological merging
and breaking of filaments without fattening curves. It also gives an improved
computational efficiency over direct numerical simulation of the Ginzburg
Landau equations because it obtains the ¢ — 0 limit of the phase field model
without this artificial, small scale.

See [35] for a variety of interesting numerical experiments and general-
izations as well as an asymptotic analysis justifying the convergence of the
algorithm.

6.3 Orientation Diffusions

Independent of the work on diffusion-generated motion, Perona [26] devel-
oped and studied a diffusion-based algorithm for evolving orientation-like
quantities. His motivation was to develop methods appropriate for smooth-
ing noisy data, analyzing images at multiple scales and enhancing discontinu-
ities for applications in image processing and computer vision. In particular,
he was interested in problems where the important information is contained
in the orientation of lines, rather than the brightness values. To accomplish
these goals, Perona embeds the orientation # in the plane via the map

w = [cos(#), sin(6)].

The orientation vector w is then alternately diffused for a short time and
projected onto the unit circle to give an algorithm that is remarkably similar
to diffusion-generated motion for filaments.



6 CONNECTION TO PHASE FIELD PDES 40

Au is important .
reaction term

in an € -nbhd drives u==u/lul

of the filament

filament is given by u=0
or by the center of winding of u

Figure 16: The filament is given by u = 0, or the center of winding of u. In
an e-neighborhood of the filament, the Laplacian term dominates. Further
away, the reaction term drives u to u/|ul.
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Perona also provides a simple discretization for his method and gives a
variety of interesting examples that demonstrate that his approach eliminates
noise and gives useful image information at multiple scales. See [26] for full
details.

7 Summary and Directions for Future Work

Convolution-thresholding is a flexible, general framework for defining inter-
face motions. In this approach, an interface is represented as the singular set
of a suitable representing function, and the function is updated in time by
alternatively convolving with a smoothing kernel and thresholding (or, more
generally, projecting back onto the restricted set of values) to obtain an
updated valid representing function. This approach is intrinsically discrete
in time, and is amenable to fast, accurate spatial discretization via Fourier
transform techniques. The resulting schemes tend to be simple, yet they can
describe complex, curvature dependent flows that include topological changes
and triple point motions. It also generalizes to describe the curvature mo-
tion of filaments, or arbitrary dimension subsurfaces within higher dimen-
sional spaces. The method has illuminating relations to Huygens’ principle,
cellular automata and reaction-diffusion/phase field PDE models of inter-
face motion, and can provide a valuable alternative formulation in various
applications or theoretical investigations.

A key area of future work is the inverse problem (cf. [14]): given a
surface motion law, find a kernel (or kernels) and some thresholding technique
that achieves that law. As an example, we are currently seeking methods
for the anisotropic curvature-dependent motion of junctions such as those
arising in materials science applications. Other areas of interest include the
development of new methods for more general (or possibly nonlocal) motion
laws or methods for constrained curvature dependent flows (cf. [4]). More
generally, statistical methods offer great promise in modeling a variety of
interesting experimental processes. See Ringach, Sapiro and Shapley for an
example [27].

Another interesting theoretical problem is to establish the range of valid-
ity of the meta-principle from Section 6, i.e. to determine when a phase field
or reaction-diffusion type of PDE model has the same limiting behavior as
its diffusion-generated motion analogue [35]. When applicable, this princi-
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ple allows interface or filament motion to be immediately translated into the
simpler convolution-thresholding schemes.

It is also of great interest to couple convolution-thresholding schemes to
physical or biological processes occurring off the interface. An example of
such a coupling was given in Section 5.5 where the thresholding level was
set, according to a second recovery variable to simulate an excitable medium,
but it remains to fully develop such coupling strategies for general classes of
coupled interface-external equation models.

Computationally, the algorithms of Ruuth [32] give a simple and efficient
means for treating most curvature-dependent motions. However, the method
can be inefficient for motions which are independent of curvature since the
corresponding kernels have smaller supports and so require more spatial res-
olution than those for curvature motion [33]. Thus, an interesting research
project would be to develop fast algorithms for these small kernels.

Theoretically, rigorous treatments of two phase motions have been de-
veloped in codimension one (eg., curves in two dimensions or surfaces in
three dimensions). These proofs assume positive, symmetric kernels and
a fixed threshold [6, 1, 17, 18]. For extensions to arbitrary codimension,
multiple junctions and variable thresholds, a variety of heuristic arguments,
asymptotics and experimental evidence supporting convergence have been
developed [22, 21, 23, 31, 33, 35|, but a rigorous theory has proven elusive.
Indeed, many interesting kernels have not yet been the subject of systematic
numerical investigation. These include nonsymmetric kernels and kernels in-
volving both positive and negative components. Also, the extremely simple
volume preserving motion be mean curvature algorithm algorithm described
in Section 4.5 would be an excellent target for a convergence proof.

As can be seen from this brief review, convolution-thresholding methods
for interface motion have attracted considerable theoretical and computa-
tional interest, and have interesting relations and contrasts with other meth-
ods for surface evolution. They have arisen independently in varied fields
of research, and they provide an interesting bridge between geometric, PDE
and cellular automata models that produce moving interfaces. We anticipate
a great amount of future development as these connections and applications
are explored more thoroughly.
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