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Abstract

We consider linear multistep methods that possess general monotonicity and bound-
edness properties. Strict monotonicity, in terms of arbitrary starting values for the
multistep schemes, is only valid for a small class of methods, under very stringent
step size restrictions. This makes them uncompetitive with the strong-stability-
preserving (SSP) Runge-Kutta methods. By relaxing these strict monotonicity re-
quirements a larger class of methods can be considered, including many methods of
practical interest.

In this paper we construct linear multistep methods of high-order (up to six)
that possess relaxed monotonicity or boundedness properties with optimal step size
conditions. Numerical experiments show that the new schemes perform much better
than the classical monotonicity-preserving multistep schemes. Moreover there is a
substantial gain in efficiency compared to recently constructed SSP Runge-Kutta
(SSPRK) methods.
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1 Introduction

Along with the usual linear stability and consistency requirements, nonlinear
monotonicity and boundedness properties are often desirable, and in particular
they are frequently needed in the time discretization of PDEs with nonsmooth



solutions. In this paper we shall be concerned with systems of ordinary differ-
ential equations (ODEs) in R™,

w'(t) = F(w(t)), w(0) = wo (1)

that arise from the semi-discretization of (hyperbolic) partial differential equa-
tions (PDEs). We shall assume that there is a maximal step size At,, > 0 such
that

v+ At F(v)|| < vl for all 0 < At < Atp, veR™, (2)

where || - || is a given semi-norm, such as the total variation over the com-
ponents. We are interested in the discrete preservation of monotonicity and
boundedness properties by numerical approximations w,, ~ w(t,), t, = nAt,
generated by linear multistep methods. Of course, with the forward Euler
method (2) leads to

lwall < |Jwoll forall n>1, (3)
whenever the step size restriction At < At is valid. With higher-order linear

multistep methods, we shall see that related monotonicity or boundedness
properties can also arise, albeit with a (possibly) modified time step restriction.

We shall mainly consider explicit linear multistep methods

k
wy, = Y (ajwn—_j + bjAtF(w,—j)), n>k, (4)
j=1
where the starting vectors wg, wy, - - -, wi_1 are either given or computed by an

appropriate starting procedure. A common generalization of (3) for multistep
methods is

Jwnll < max ]l 5)

However, this property is only valid for a small class of methods under strin-
gent step size restrictions; see § 2 for a brief review.

It was shown in [7] that methods of practical relevance can be included in the
theory if we consider multistep methods in combination with starting proce-
dures that generate wy, ws,. .., w,_1 from wy. Instead of (5) we will consider
the property

lwn|| < M JJwg| forall n>1, (6)



where the size of the constant M > 1 will be determined by the starting
procedure. In case M = 1, this will be referred to as monotonicity. If M > 1
this is a boundedness property. Following [7] we can determine constants C,,
such that (6) holds under the step size restriction At < C At .

The main application of such monotonicity and boundedness results are found
in the numerical solution of hyperbolic PDEs, in particular for conservation
laws. For such problems, the step size restriction At < C},,At .5 is often called

a CFL condition and the threshold C,,, is then the CFL coefficient. For the
one-dimensional equation

spatial discretization will lead to a system of ODEs where the components
of w(t) approximate the PDE solution at grid points or surrounding cells,
w;(t) =~ u(z;,t). The discrete total variation |[v|| = TV(v) is a semi-norm
defined as TV (v) = ¥; |v;—v;—1|, where e.g. vy = vy, for problems with periodic
boundary conditions. For this semi-norm, the property (2) is called the TVD
(total variation diminishing) property, and its generalization (6) with M > 11is
called the TVB (total variation bounded) property. This boundedness property
is important because conservative TVB schemes are known [4] to converge to
the correct entropy solutions of hyperbolic conservation laws.

In a previous paper [7] property (6) and the step size restriction At < C, Aty
was studied for a class of second-order multistep schemes as well as the third-
and fourth- order explicit Adams and extrapolated BDF schemes. In this pa-
per, a more systematic study of high-order methods is carried out, leading
to methods that satisfy the boundedness property (6) with optimal threshold
factors C},. In particular, third- and fourth- order schemes are constructed
that give 38% and 115% improvements in C',, over the best schemes presented
in [7]. This paper also gives the first studies of the boundedness property (6)
and the corresponding step size restrictions for fifth- and sixth- order schemes.

A variety of theoretical results for general multistep schemes are presented
in a related paper [6]. In particular, that paper proves that the boundedness
property (6) arises when properties (2), (17) and (18) hold and a Runge-Kutta
starting procedure is used. Generalizations of this result are also derived, in-
cluding one that relaxes assumption (2). It is also shown that over the class
of implicit linear multistep methods, the optimal threshold factors are (rather
strictly) bounded according to C,,, < 2 for orders p > 2, making such meth-
ods unattractive if the boundedness property (6) is crucial. In this paper we
shall mainly be concerned with the construction of optimal explicit high-order
schemes, and for precise theoretical details we shall refer to [6].



Numerical tests on some scalar conservation laws will show that our new
optimal multistep methods are superior to the optimal schemes of [3,14,19]
that satisfy (5).

Up to now, most of the effort to construct time step methods with optimal
monotonicity properties has been directed to Runge-Kutta methods. There-
fore, in our experiments also monotone SSP Runge-Kutta (SSPRK) methods
of [10,16,20,21] will be taken into consideration. The examples provided in this
paper demonstrate that our new multistep schemes are often more efficient (in
terms of CPU) than standard SSPRK methods. They also have the advantage
that they do not degrade accuracy near inflow boundaries of the PDE domain.
On the other hand, our methods require more storage than popular SSPRK
methods. See Remark 4.1 for further details on these last two points.

In § 2 a brief review is presented of multistep methods satisfying the strict
monotonicity property (5), including some improvements on the methods
listed in [3]. The main section of this paper is § 3, where optimal methods
satisfying (6) with order p = 3,4,5,6 and step number k = p or k = p+ 1
will be constructed. Numerical illustrations are given in § 4. There we con-
sider a monotonicity test for the linear advection equation with first-order
upwind spatial discretization, as well as a comparison of the accuracy for var-
ious multistep and Runge-Kutta methods applied to Burgers’ equation with
high-order ENO spatial discretizations. The final § 5 contains a summary and
conclusions.

2 Monotonicity with Arbitrary Starting Values
2.1 Methods with Non-negative Coefficients

Assume that all a;,b; > 0. By regarding the step (4) as a linear combination
of scaled forward Euler steps it easily follows that the monotonicity property
(5) will be valid under (2) with the step size restriction

At < KuyAtp,  Kpy= min -2 ifa;,b; > 0 for all 7, (8)

with convention 0/0 = +oo. This result is due to Shu [19], where it was
formulated with total variations. For explicit methods with & > 2, Lenferink
[14] showed that

k—p

KLM S m (9)



Hence K, > 0 is not possible for any method with p = k.

The optimal schemes of order 2 are given by [14,19]

k(k — 2) 1 ok
- ak—m, bl—— (10)

with the other coefficients zero. Higher-order schemes have been constructed
in [14,19], mainly numerically. Our preferred technique is based on a recent
approach of [18] for optimizing SSP Runge-Kutta (SSPRK) methods. Since
we shall use this technique below for deriving new schemes, we describe it here
in some detail.

We begin by noting that optimal k-step schemes of order p can be derived
by maximizing K,,. Here, the order conditions give p 4+ 1 relations for the
coefficients a;, b; [5,11]. However, this formulation of the nonlinear program-
ming (NLP) problem does not lend itself easily to numerical solution; see [21]
for further discussion. By introducing a dummy variable z, the nonlinear pro-
gramming problem can be reformulated as finding

max 2, 11a
(a;,b5) (11a)

subject to the p + 1 order conditions and

4. b >0,  i=12.. .k, (11b)
a; —zb; > 0, 1=1,2,... k. (11c)

This NLP formulation is comprised of factorable objective and constraint
functions and thus is suitable for optimization in BARON [2], which is a
commercially-available, deterministic global branch-and-bound optimization
program.

To guarantee optimality in BARON we typically need to supply bounds to all
the variables. Fortunately we know that all the a; are bounded by 1 (because
>;a; = 1) and all the b; are bounded by the inverse of K,,. Finding globally
optimal schemes and guaranteeing their optimality is surprisingly efficient.
For example, BARON 5.0 finds the optimal fifty-step, fourth-order scheme and
guarantees its optimality in just 0.58 seconds on a 1.2 GHz Athlon machine.

A list of guaranteed globally optimal schemes for k£ up to six with order p
equal to three or four is given in Table A.1 at the end of this paper. Because
schemes of this type have most recently been referred to as strong-stability-
preserving (cf. [3]) and because the coefficients are all non-negative, we denote
the optimal k-step, order-p linear multistep scheme as SSPMS, (k, p).



Fifth- and sixth-order multistep schemes of this type require at least seven
steps and do not appear in the table. In view of (9), all methods in the table
have k£ > p.

The optimal third-order SSPMS, (4,3), SSPMS, (5,3) [19,14] and SSPMS, (6,3)
[14] schemes have been known for some time and we reproduce them here for
convenience. The remaining SSPMS, (5,4) and SSPMS, (6,4) schemes have
K, values that agree with the bounds provided in [14].

2.2 Schemes with Spatial Downwinding

As noted in [19], the assumption b; > 0 can be avoided for discretizations
of conservation laws (7). If b; < 0, then F(w,_;) in (4) should be replaced
by F(w,—;), where w' = —F(w) is the semi-discretization of the equation
with reversed time w; — f(u), = 0. Its realization in practice is simply a
reversal of the upwind direction in the spatial discretization. Instead of (8)
this modification will give the step size restriction

At < KoyAtey, Koy = lrgjgk% if a; > 0 for all j (12)
—J = J

to achieve (5).

The following result gives an upper bound for this threshold factor for second-
order schemes. The proof is given in Appendix B.

Theorem 2.1 For second-order k-step methods we have K, < (k — 1)/k.
This upper bound is achieved for k > 2 by the schemes (4) with
k2 1 k3 k

il TRl YT RoDE ) T k-1

ai

and all other coefficients equal to zero.

Higher-order schemes have been constructed numerically in [19]. We derive
globally optimal schemes with downwinding by extending our optimizations
for non-negative coefficient schemes.

Following [18], we introduce a dummy variable z and we write b; = o;b; with
b; = |b;| and o; = sgn(b;) = £1. Then the optimization becomes

max =z, (13a)
(aj,b5,05)

subject to the p + 1 order conditions and the constraints



ai, b; >0, i=1,2...k, (13b)
ai—zb; >0, i=1,2,... k. (13c)

Notice that this mixed integer nonlinear programming formulation is com-
prised of factorable objective and constraint functions and that the variables
are easily bounded. Thus this is a suitable mathematical formulation for find-
ing guaranteed optimal solutions in BARON. This model may be efficiently
treated by solving 2¥ NLP problems, each corresponding to one of the possible
sign combinations. This leads to a total of 2* cases each of which only requires
a fraction of a second to solve in BARON 5.0. Alternatively, the optimization
can be carried out in about the same overall CPU time and less programming
effort if product disaggregation (or distributing products over their sums) is
applied to the order conditions. See [22] for details on this technique.

Using the BARON software package, a list of guaranteed globally optimal
schemes was constructed for orders p = 3,4,5,6 and k£ < 6. This is presented
in Table A.2 at the end of this paper. Following the convention described in
the previous section, we denote the optimal k-step, order-p scheme with a; > 0
and unrestricted coefficients b; as SSPMS (k, p).

The schemes SSPMS4(4,3), SSPMS. (5,3), SSPMS.(5,4), and SSPMSL(6,6)
are new. Our study for the optimal six-step, third-order scheme is also new;
however, there the non-negative coefficient scheme SSPMS, (6,3), first pre-
sented in [14], is optimal. The optimal schemes SSPMS, (3,3), SSPMS. (4,4)
presented in Table A.2 essentially agree with earlier schemes from Gottlieb,
Shu and Tadmor [3]. Some improvements were found in the remaining three
cases over earlier studies [19,3]. Specifically, 16%, 12% and 1% improvements
in K, were found for SSPMS. (6,4), SSPMS. (5,5), and SSPMS,(6,5), re-
spectively.

Comparing the SSPMS, (k,p) and the SSPMS, (k,p) schemes, it should be
noted that for the SSPMS, (k,p) schemes both function evaluations F;, and
F, will be needed. If more than one processor is available, these evaluations
can be carried out in parallel. On a serial machine, however, these schemes
will be approximately two times more expensive per step. Moreover, the use of
downwind discretizations may add some numerical diffusion that will persist
even for small step sizes; see the test results in § 4.

3 Boundedness for Higher-Order Methods

The above monotone multistep schemes are not competitive with the Runge-
Kutta schemes of [10,16,21]. However, by considering the multistep schemes
in combination with starting procedures, it is possible to consider schemes



that satisfy the boundedness property (6) with a constant M whose size is
determined by the starting procedure [7].

This section contains derivations of optimal boundedness results for explicit
linear multistep methods of order p = 3,4,5,6. To study the boundedness
property (6), with M > 1, it is not necessary to specify the starting schemes:
while the value of M may vary according to the starting procedure, the bound-
edness property itself is independent of the chosen startup. (We remark that
this result uses the fact that the startup is only applied for a fixed number of
times. See [6] for the proof.)

3.1  Reformulations

The derivation of boundedness results is largely based on suitable reformula-
tions of the schemes, whereby a k-step scheme is first rewritten as an equivalent
(k + 1)-step scheme with a free parameter, then as a (k + 2)-step scheme with
two free parameters, etc., up to the starting values. The free parameters can
then be selected such that the scheme has non-negative coefficients.

To keep the presentation concise and clear, we give such a reformulation here
in detail only for three-step schemes; the general formulas can be found in
[6]. Consider (4) with & = 3. Then by subtracting and adding 6, ...0;w,_;,
Jj = 1,2,...,n — 3, substituting w,_; in terms of w,_;_;, i = 1,2,3, and
collecting terms, it follows that w, can be expressed as

n—3

2
Wy = Z (ajwn_j —f- ﬁjAtFn_j) + (ain_iwi + ﬁﬁn_zAtE) s (14)
=0

Jj=1 7

where the coefficients «;, 3; are given by

ap=a;— b, ay=ax+al; — 00y, «a3=az+ ath + a0.0;— 00505,

73

a; = ( H ek) (ag + &293'72 + a19j729j71 - 9]'*293'*19]') , Jz4,

k=1

Bi=0b1, [a=0by+bi01, Ps=0bz+ b0+ b10,0,
j—3

Bi = (T 0x) (b3 + babj2 + b1 20;,1) , j >4

k=1

and the coefficients of the remainder term are

3 n—i—j 3 n—i—j
off, =3 a( I1 ), B8 =S b( I &), 0<i<2
j=3—1 k=1 j=3—1 k=1



For k-step methods with k£ > 4 we can proceed similarly. In the above refor-
mulation (14) we get the same expressions for oy, as, ag and [y, (o, [3; the
other o, 8; will then involve more terms.

We shall take 8, > 0 such that

a; >0, (;>0 forall j > 1, (15)

and we define

a{.
C,, = max min —Z. 16
e = fmax wmin o (16)

In the search for favorable schemes we will require that

0, =0, < 1forall j > j; (17)

since any zero-stable, irreducible scheme with C,, > 0 must have this property
[6]. Under these assumptions it follows that the boundedness property (6)
holds with M > 1 for step sizes

At < CupAtpp. (18)

To obtain results for genuine monotonicity, that is, M = 1, it is also necessary

to study the coefficients o, ; and 37, ; of the remainder term in (14) and

n,n—1

to include specific starting procedures. For a detailed analysis, we refer to [7]
for the case k = 2 and to [6] for £ > 3.

3.2 Optimizations of Cpy,

Two-step, second order explicit methods can be studied by hand, as it was
done in [7]. Methods involving more steps are more involved, and naturally
lead us to consider numerical optimization techniques. Following § 2.1, we
formulate the optimization problem by introducing a dummy variable z that
corresponds to C';,,; however, now all the «;, 3; must be constrained to be non-
negative. We have carried out extensive optimizations in BARON to determine
numerically optimal schemes. A guarantee of optimality is not sought since

the overall complexity of the optimization problem makes this much more
difficult.

By increasing the number of #-values, we hope to obtain schemes with im-
proved time-stepping restrictions. However, some bound on the number of -
values must be imposed to make the optimization practical. In our derivations,



values of j, ranging from 15 to 25 were used, depending on the order of the
method under consideration (Higher-order methods required more #-values to
obtain large CFL coefficients). Further increases in j, were not found to sub-
stantially increase C,, (see Appendix A of [6] for precise details) and produced
no discernable improvement in numerical tests. Indeed, for (k,p) = (3,3) and
(k,p) = (5,5) the j. values were chosen to be large enough that further in-
creases produced no improvement whatsoever in C',,.

The schemes that are found this way for given step number k and order p will
be denoted as TVB(k,p). Somewhat surprisingly, seeking optimal schemes
often led to a value 6, = 0. This means that all coefficients «;, 3; are zero for
j > k-+j,, and hence the reformulation then gives a [-step scheme, | = k+j,—1,
with non-negative coefficients. Using [19], it is easily seen that this extended
scheme is monotone for arbitrary starting values (ie, it satisfies monotonicity
property (5) for arbitrary staring values) provided At < C, Aty [6]. Clearly
it is also reducible to the original k-step method [5], so the extension should
primarily be regarded for theoretical interest. Schemes with 6, = 0 will be
denoted by TVBy(k, p).

Finally we note that for all the new schemes presented in this section the error
constants turned out to be of moderate size. These error constants C, properly
defined in [5, p. 373], provide a good measure for the leading term C'A#? in the
global error.

3.3 An Order-Three Scheme

We first optimize C',, over the class of three-step, third-order linear multistep
schemes with fifteen #-values. This yields a scheme that satisfies the bounded-
ness property (6) with M > 1 provided At < 0.537At,;. The coefficients are
given in Table 1. It is noteworthy that the optimization leads to 6,9 = 0, im-
plying this scheme can be rewritten as a twelve-step scheme that is monotone

with arbitrary starting values. Because of this property, we will refer to this
scheme as TVB(3,3).

It is interesting to compare this TVBg(3,3) scheme against the third-order
extrapolated BDF scheme (eBDF3)

18 9 2 18 18 6
Wy = 11wn,1 — 11wn,2 -+ 11wn,3 -+ 11AtFn,1 — 11AtFn,2 -+ 11AtFn,3 ,(19)

which is the best reported third-order scheme in [7]. Because its threshold value
is given by C}, = 7/18, the new scheme TVB(3,3) gives a 38% improvement
over eBDF3 in allowable (stable) step size, for which (6) is ensured.

10



The new TVB(3,3) scheme also has a relatively large linear stability region,
showing where linear stability is valid for the scalar, complex test equation
w = Aw, z = At X\. The TVB,(3,3) stability region includes a part of the
imaginary axis. See Figure 1 for a comparison of the stability region of this
scheme and the eBDF3 scheme.

Although the form of the stability regions is not directly related to monotonic-
ity properties, it seems that for higher-order spatial discretizations violation
of the linear (von Neumann) stability conditions often leads to inaccurate so-
lutions due to numerical compression of smooth solutions; see for instance |8,
Sect. 1.3] for an illustration. Having a portion of the imaginary axis and some
region to the left of it in the stability region ensures that the scheme will be
stable under appropriate CFL restriction in the classical, linear sense for any
spatial discretization.

Table 1
The coefficients of the numerically optimal three-step, third-order linear multistep
scheme.

TVBo(3,3) a; b; Cru
i=1 1.908535476882378  1.502575553858997  0.537252303224424
i=2 -1.334951446162515 -1.654746338401493
i= 0.426415969280137  0.670051276940255
1 1
0.8r 0.8
os  TVB(33) 2 ] %% TVB (5.4)
0.4r 0.4 F
0.2r eBDF3 0.2 ﬁ
0 0

-15 -1 -0.5 0 0.5 -15 -1 -0.5 0 0.5

Fig. 1. Stability regions for the eBDF3 and TVBg(3,3) schemes (left plot) and the
eBDF4 and TVB((5,4) schemes (right plot). The TVB(4,4) region is not shown
since it closely agrees with the TVBg(5,4) region.
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3.4 Fourth-Order Schemes

3.4.1 Four-Step Schemes

We direct our attention next to the class of four-step, fourth-order linear
multistep methods. In the reformulations for this class, we were unable to find
schemes which allowed arbitrary starting values in an extended version (i.e.,
. = 0). Moreover, taking 6; = 6, for all j > j, we found that C},, increases as
0. € [0, 1) increases. Unfortunately the choice 8, = 1 does not lead to a scheme
that is stable; the scheme turned out to have two characteristic roots equal to
one, giving weak instability. For 6, close to 1, the (scaled) error constants [5,
p. 373] are large. Selecting an appropriate scheme is therefore quite interesting
and subtle, since larger 0,-values give larger C';,,~values while smaller 6,-values
give better accuracy and also seem to minimize the possibility of oscillations
arising from the startup procedures when M > 1.

On the balance, we bias our choice towards large time steps by taking 6, = 0.7
giving a restriction of At < 0.458At,,. This is approximately 15% less than
the limiting case 0, = 1 (Cp,, = 0.537 for 0, = 1). We provide the scheme to
fifteen decimal digits in Table 2 and remark that the 65 = 0.7 constraint was
active for this scheme.

It is natural to compare this TVB(4,4) scheme against the fourth-order ex-
trapolated BDF scheme (eBDF4)

_ 48 _ 36 4 16 _ 3
Wy = 25wn—1 25wn—2 25wn—3 25wn—4 (20)
48 72 48 12
+ P ALF, 1 — 5EALF, 5 + 52 AtF, 5 — 5EALF, 4.

Since the nonlinear time-stepping restriction of eBDF4 is given by C,,, = 7/32,
the new scheme provides for a 109% improvement in allowable (stable) step
size over the best reported scheme (eBDF4) in [7]. Once again, the stability
region of new scheme includes part of the imaginary axis and it compares
favorably against that of the eBDF4 scheme; c.f. Figure 1.

3.4.2 Five-Step Schemes

If we consider five-step schemes, then it is possible to find fourth-order schemes
that can be rewritten in an extended form that allows arbitrary starting values.
For example, optimizing C},, over the class of five-step, fourth-order linear
multistep schemes with fifteen nonzero #-values yields the TVB((5,4) scheme
presented in Table 3. This scheme satisfies the boundedness property (6) with

12



Table 2
The coefficients of the numerically optimal four-step, fourth-order linear multistep
scheme.

1=1 2.628241000683208  1.618795874276609 0.458583744721242
1 =2 -2.777506277494861  -3.052866947601049

1=3 1.494730011212510  2.229909318681302
t=4 -0.345464734400857 -0.620278703629274

M > 1 provided At < 0.45At ;. Since 016 = 0, this scheme can be rewritten
as a twenty-step scheme with non-negative coefficients. The stability region of
TVBy(5,4) includes part of the imaginary axis and essentially coincides with
TVB(4,4). See Figure 1.

By increasing the number of nonzero 6-values, we can obtain slightly larger
C'~values. For example, optimizations using thirty 6-values produced a scheme
with C},, = 0.471. We do not reproduce that scheme here as it had similar
behavior in numerical tests to TVBy(5,4).

Table 3
The coefficients of the numerically optimal five-step, fourth-order linear multistep
scheme.

TVBy(5,4) a; b; Cin
i=1 3.089334754787739  1.629978886421390  0.450202335599730
i= -3.997727108450201  -3.839438825282836
i= 2.799704082644115  3.698752623531085
i=4  -1.069321620028803 -1.688757722449064
i= 0.178009891047150  0.305220798719644

3.5 An Order-Five Scheme

We next study five-step, fifth-order linear multistep methods. For optimizing
C'y over this class we used twenty-five f-values. This yields a scheme with
M > 1 provided At < 0.377At.;. The coefficients of this optimal scheme are
given in Table 4. This scheme has #5; = 0 which implies that it can be rewritten
as a twenty-five step scheme that is monotone with arbitrary starting values.

13



As a basis for comparison, we consider the fifth-order extrapolated BDF
scheme (eBDF5), which is given by

300 300 200 75 12
Wn = 737Wn—1 = 137Wn-2 F 737Wn-3 = 737 Wn—4 T T37Wn-5
300 600 600 300 60

The nonlinear time-stepping restriction of eBDF5 is At < 0.0867At.; so
TVB(5,5) gives a 335% improvement in allowable (stable) step size over this
extrapolated BDF scheme. The linear stability of the scheme is also favorable
when compared against eBDF5; see Figure 2. However, we know the scheme
cannot include the imaginary axis near the origin since it is impossible for
any five-step, fifth-order scheme to do so [9]. On the other hand, it is seen
that the boundary of the stability region stays very close to a segment of the
imaginary axis and the corresponding maximal amplification factors on the
imaginary axis are very close to 1. Because optimizations using k£ = 6,7 gave
similar time-stepping restrictions (the C,,~values were 0.379 and 0.395, re-
spectively) and did not produce a stricter linear stability near the origin we
focus our attention on the five-step scheme, TVB(5,5).

Table 4
The coefficients of the numerically optimal five-step, fifth-order linear multistep
scheme.

TVBy(5,5) a; b; Cin
i=1 3.308891758551210  1.747442076919292  0.377052834833475
i= -4.653490937946655  -4.630745565661800
i=3 3.571762873789854  5.086056171401077
i= -1.504199914126327  -2.691494591660196
i= 0.277036219731918  0.574321855183372

3.6 Sizth-Order Schemes

3.6.1 Six-Step Schemes

The results for the sixth-order extrapolated BDF method (eBDF6) are less
favorable than for lower-order eBDF schemes.

Theorem 3.1 For the eBDF6 scheme no positive C,, value in (16) exists.

14
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0.6 9 0.6
TVB,(5,5)

0.4 b 0.4

0.2 b 0.2
eBDF5 SBDF6
O K_/ O \*/

TVB,(7.6)

-1 -08 -06 -04 -02 0 0.2 -1 -08 -06 -04 -02 0 0.2
Fig. 2. Stability regions for the eBDF5 and TVBg(5,5) schemes (left plot) and the

eBDF6 and TVB(7,6) schemes (right plot). The TVB(6,6) region is not plotted
since it closely agrees with the TVB(7,6) region.

Proof To show that we cannot have C},, > 0, note that the first step of the
reformulation (14) for eBDF6 will give

360 360 360, 15 360, 720
w, = (m—@)wn,1+mAtFn,1+(m@—?)wn,ﬁ—(m@—m)AtFn,g-l-' .

with 0 = 0;. It is impossible for both (%(7) — ) and (%0 — %‘;) to be positive;

hence the scheme does not possess a positive threshold value Cp,,. O

Rewriting the general class of six-step methods of order six using additional
steps, we were unable to find extended schemes that allow for monotonicity
with arbitrary starting values. Taking twenty-five distinct 0-values and 6; = 0,
for all j > j. = 25 we found that C,,, increases as 0, € [0,1) increases.
Based on a variety of numerical tests, it was found that the choice 0, =
0.75 gives a relatively large C';,, = 0.328 and moderate error constant, while
adequately minimizing the possibility of oscillations arising from the startup
procedures. See Table 5 for the coefficients of this scheme and Figure 2 for the
linear stability region. Similar to the fifth-order case, the stability region of
the TVB(6,6) scheme does not contain a segment of the imaginary axis near
the origin, but its boundary is for a large part very close to the imaginary
axis.

3.6.2 Seven-Step Schemes

If we consider seven-step schemes, then it is possible to find schemes of order
six that can be rewritten as a scheme with larger step number and non-negative
coefficients, giving monotonicity for arbitrary starting values.

Optimization of C',, over the class of seven-step, sixth-order linear multistep
schemes with twenty-five nonzero -values yields the TVB(7,6) scheme pre-
sented in Table 6. This scheme satisfies the boundedness property (6) with
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Table 5

The coefficients of the numerically optimal six-step, sixth-order linear multistep

scheme.
TVB(6,6) a; b; Cru
i=1 4.113382628475685  1.825457674048542  0.328491643359885
i =2 -7.345730559324184  -6.414174588309508
i = 7.393648314992094  9.591671249204753
i=4 -4.455158576186636  -7.583521888026967
1= 1.523638279938299  3.147082225022105
1=6 -0.229780087895259  -0.544771649561925

M > 1 provided At < 0.309At ;. Since 096 = 0, this scheme can be rewritten
as an 32-step scheme with non-negative coefficients. The stability region of
TVB(7,6) essentially coincides with TVB(6,6) and does not contain a seg-
ment of the imaginary axis near the origin. The stability region is displayed

in Figure 2.

?izlio(;efﬁcients of the numerically optimal seven-step, sixth-order linear multistep
scheme.
TVB(7,6) a; b; Ciu
i=1 4.611532883607545 1.861015137800509  0.309253747416378
i = -9.451321766751356  -7.511070082780818
i=3 11.294453144657830  13.266237470507250
1=4 -8.568419982721693 -13.059962115416270
t=05 4.138363606421970 7.520216192319446
i = -1.174917528050790  -2.389309837695513
i = 0.150309642836489 0.325922452117498

4 Numerical Illustrations

In this section, we examine the numerical behavior of our new linear multistep
methods and compare with more classical monotonicity-preserving schemes,
mentioned in § 2, and some optimal SSP Runge-Kutta schemes, denoted as
SSPRK(s, p) where s is the number of stages and p the order. Our focus here
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is to illustrate the monotonicity and stability behavior of the schemes rather
than to provide a detailed accuracy study. If a study of the temporal accuracy
was desired it would be more appropriate to consider systems with smooth
solutions where the spatial discretization errors are dominated by the time
stepping errors.

4.1 Linear Monotonicity Test

As a first, simple test we consider the maximum principle for the linear ad-
vection problem

U +u, =0

on spatial interval 0 < x < 1, with inflow boundary condition u(0,¢) = 0 and
initial step function u(x,0) =1 on (0,1/2] and 0 elsewhere. The semi-discrete
system in R™ is obtained by first-order upwind discretization in space with
constant mesh width Az = 1/m. For the test m = 100 is taken.

The PDE solution satisfies the maximum principle 0 < w(z,¢) < 1 and the
same holds for the semi-discrete system. This property will be examined for the
fully discrete solutions. The maximum principle could be replaced equivalently
by max-norm monotonicity by considering an equivalent advection problem
with v(x,t) = 2u(x,t) — 1.

Starting values for the multistep schemes were computed by the forward Eu-
ler method (FE) and the classical fourth-order Runge-Kutta method (RK4).
Note that for this simple linear problem the classical Runge-Kutta method is
monotone. For actual applications, a natural choice would be to use a mono-
tone starting scheme of order p — 1 or p for a multistep scheme of order p, in
combination with a suitable spatial discretization. For this monotonicity test,
using the first-order upwind discretization, only the choices FE and RK4 were
considered for convenience.

Subsequently, the largest Courant numbers At/Az € {0.01,0.02,...} were
determined such that

— < w, <1l+4c¢€ for n=1,2,...,1000,

with inequalities for the vectors w, € R component-wise. Of course, if e =0
this is a genuine maximum principle. In exact arithmetic we could take e =0
for a monotone scheme with rational coefficients. To cater for round-off and
the fact that our schemes are not genuinely monotone we took as standard
value € = 107'°. However for the TVB(4,4) scheme e-values larger than this
default value were needed; those results were obtained with ¢ = 107!2. In
the following tables the maximal Courant numbers are listed for the most
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interesting optimal schemes. For comparison, also the entries for the eBDF-
schemes are presented.

Table 7

Linear monotonicity test: Maximal Courant numbers for the optimal k-step meth-
ods, k = 3,4. The results for TVB(4,4) were obtained with ¢ = 107'2; this is
indicated by the entries*).

eBDF3 SSPMS,(3,2) TVBy(3,3) eBDF4 SSPMS,(4,3) TVB(4,4)

Con 0.39 0.50 0.53 0.22 0.33 0.45

Exper.(FE) 0.41 0.50 0.53 0.26 0.34 0.46(*)

Exper.(RK4)  0.43 0.50 0.53 0.30 0.35 0.51%)
Table 8

Linear monotonicity test: Maximal Courant numbers for the optimal k-step meth-
ods, k=5,6,7.

eBDF5 TVBy(5,5) TVBg(54) eBDF6 TVB(6,6) TVBg(7,6)

Cou 0.08 0.37 0.45 0.00 0.32 0.30
Exper.(FE)  0.17 0.37 0.47 - 0.32 0.32
Exper.(RK4)  0.21 0.38 0.50 - 0.37 0.34

4.2 Nonlinear Test: Burgers’ Equation

To further investigate the behavior of our time-stepping schemes, we consider
one of Laney’s five test problems [12], the evolution of a square wave by

Burgers’ equation

ou 0

— + = (lu2> =0

ot Oz \2
on the spatial interval —1 < x < 1 with periodic boundary conditions. In this
test case, the discontinuous initial conditions

1 for |z| <1/3,
u(z,0) =
—1for 1/3<|z| <1,

are evolved to time ¢t = 0.3 using a constant grid spacing of Az = 1/320. In
this example, the jump at at z = 1/3 remains a steady shock and the jump at
x = —1/3 creates a simple centered expansion fan between ¢; = —1/3 — ¢ and

18



¢ = —1/3 4 t. Until the shock and expansion fan intersect, at time ¢ = 2/3,
the exact solution is [12]

r—C1
_1+202—01 for c; <x <ecy,
u(z,t) = 1 for co < <1/3,
-1 elsewhere.

The example is particularly interesting because it illustrates the behaviors near
sonic points (u = 0) that correspond to an expansion fan and a compressive

shock.

Similar to [21,16], we choose the finite-difference Shu-Osher schemes (ENO-
type) for spatial discretization of the equation. These discretizations are de-
rived using flux reconstruction and have a variety of desirable properties. For
example, they naturally extend to an arbitrary order of accuracy in space, and
they are independent of the time discretization, thus allowing experimenta-
tion with different time discretization methods. Moreover, educational codes
are also freely available [12,13], an attribute which is desirable for standardiz-
ing numerical studies. In our simulations we take the spatial order of accuracy
in Ax to be the same as the temporal order of accuracy p. Flux splitting is
taken as in [21,16]. For further details on the underlying discretization as well
as a code for the spatial discretization, see [12,13].

4.2.1  Third-Order Experiments

To quantify the accuracy of the computed solution, we use the logarithm of
the discrete L, errors at time ¢, = 0.3

togao (- - uf — ule,t)]).

=1

where m is the number of grid points and w} is the fully discrete solution
in grid point x; at time ¢,. A plot of the error for a selection of third-order
methods is given in Figure 3. To ensure a fair comparison for methods with
a different number of function evaluations, the error is plotted as a function
of the effective CFL number, At/(sAx) for a method taking s function eval-
uations per step, rather than the CFL number itself. This implies that for
a particular plot, the total number of function evaluations at a particular
abscissa value will be the same for each scheme. We started the computa-
tions with an effective CFL number of 0.02 and continued until the numerical
scheme produced overflow (complete instability).
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In this test example, we compare a number of three-step, third-order linear
multistep schemes and the optimal three-stage, third-order SSP Runge-Kutta
method SSPRK(3,3) that was derived by Shu and Osher in [20,19] and Kraai-
jevanger in [10]. All the multistep schemes are started using the SSPRK(3,3)
scheme. Of the schemes considered, the best performance is given by the new
TVB(3,3) scheme and the poorest performance is given by the classical SSP
multistep scheme SSPMS_(3,3). In particular, the TVB(3,3) scheme allows a
284% increase in the effective time step over SSPMS.(3,3) and 22% increase
over the popular SSPRK(3,3) scheme. The extrapolated BDF scheme also per-
forms well, providing a 15% increase in the effective timestep over SSPRK(3,3).
We remark that TVB(3,3) and eBDF3 each require one function evaluation
per timestep while SSPRK(3,3) requires three and SSPMS_(3,3) requires two
(due to its use of a downwind-biased operator).

The oscillations in the error plots suggest that oscillations in the solutions arise
for large enough time steps (and before the methods produce overflow). An
examination of the total variation (TV) of the solutions verifies this conjecture
and also leads us to recommend the new TVB(3,3) scheme. In particular,
we remark that the TV-increase for TVBy(3,3) remains very small (less than
107'2) up to an effective CFL number of 0.375. This represents an improvement
in the time step-size of 213%, 25%, and 23% over the SSPMS.(3,3), eBDF3,
and SSPRK(3,3) schemes, respectively.

An assessment of the quality of the solution may also be carried out by ex-
amining the solution profiles themselves. See Figure 4 for some zoom-ins near
the shock. Plot (b) illustrates that for very small timesteps the SSPMS, (3,3)

21F
221
231 SSPRK(3,3)
_2Ar SSPMS (3,3) eBDF3
S -
> TSN
S50
E
-26F
27r ~
TVB,(3,3)
—28f
-29F
_3 L L L L L L L L L J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Effective CFL number

Fig. 3. Burgers’ equation: L; errors as a function of the effective CFL number for
selected third-order schemes.
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scheme produces more smearing than other schemes. As explained in [16] this
can be attributed to its use of downwind-biased spatial discretizations. Plot (c)
gives an example with larger timesteps. In this example, the SSPMS,(3,3) is
no longer stable and SSPRK(3,3) exhibits a clear undershoot. The eBDF3 and
TVB((3,3) schemes both give a good treatment of the shock, with TVB(3,3)
being somewhat less dissipative. Larger timesteps (corresponding to an ef-
fective CFL number of 0.45) are illustrated in plot (d). In this experiment,
SSPRK(3,3) has gone unstable and eBDF3 exhibits oscillations. The TVB(3,3)
scheme, however, performs well without any visible oscillations or excessive
smearing.

Numerical experiments using SSPMS, (4,3) are also possible. Notice, however,
that this scheme has a smaller CFL coefficient and requires more steps than

(a): analytical solution (b): Effective CFL number of 0.125.
‘ : : -0.95
1
0.5 SSPMS (3,3)
TVBO(S,S)
S 0 2" -1
-0.5
- ‘ ‘ ‘ -1.0 ‘ ‘ ‘
-1 -0.5 0 0.5 1 70.33 0.335 0.34 0.345 0.35
X X
(c): Effective CFL number of 0.4. (d): Effective CFL number of 0.45.
-0.99 ‘ ‘ ‘ -0.98 ‘ ‘ ‘
eBDF3
TVB,(3,3)
-0.995 -0.99 0

TVB,(3,3) /
-1 2= 1 [~
-1.005 SSPRK(3.3) -1.01 /

eBDF3
-1.01 ‘ ‘ ‘ -1.02 ‘ ‘ ‘
033 0335 034 0345 035 033 0335 034 0345 035
X X

Fig. 4. Plots of the solution for third-order methods applied to the Burgers’ equation
example. (a): The analytical solution. See also the dotted line in zoom-in plots
(b)-(d). (b): Numerical results using an effective CFL number of 0.125. eBDF3
and SSPRK(3,3) closely agree with TVB((3,3). (c): Numerical results using an
effective CFL number of 0.4. SSPMS(3,3) is unstable. (d): Numerical results using
an effective CFL number of 0.45. SSPMS4(3,3) and SSPRK(3,3) are unstable.
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eBDF3 or TVB(3,3). Furthermore, the scheme has no theoretical advantage
(in terms of effective CFL coefficient) over the classical one-step SSPRK(3,3)
method even though additional memory is required. Our numerical tests were
also unable to uncover a compelling reason to use SSPMS, (4,3) since it pro-

duced oscillations and complete instability for smaller effective CFL numbers
than any of SSPRK(3,3), eBDF3 and TVBy(3,3).

4.2.2  Fourth-Order Experiments

For a selection of fourth-order schemes the L; errors as a function of the
effective CFL number are plotted in Figure 5. All the multistep schemes are
started using the optimal SSPRK(5,4) scheme [10,21]. We remark that the
TVB(4,4) scheme gave similar results to TVBy(5,4), so its plot is omitted for
clarity. The SSPMS, (5,4) scheme was also tested, but its plot is not included
since its stability is not competitive with SSPMS, (4,4).

Of the schemes considered here, the best performance is given by the new
scheme TVBg(5,4) and the weakest performance is given by the classical SSP
multistep scheme SSPMS, (4,4). More specifically, the TVB(5,4) scheme al-
lows a 600% increase in the effective time step over SSPMSL(4,4), a 13%
increase over the SSPRK(5,4) scheme, and a 2% increase over TVB(4,4).
The extrapolated BDF scheme is not competitive with either SSPRK(5,4)
or TVB(5,4), although its performance is much better than SSPMS, (4,4).

Similar to the third order case, an examination of the solution profiles for small
timesteps indicates that SSPMS. (4,4) is more dissipative than other fourth-
order schemes. If we move to a larger timestep (corresponding to an effective
CFL number of 0.275) we find that eBDF4 produces an undershoot, while
TVB(5,4) and SSPRK(5,4) both perform well. Indeed, TVBg(5,4) performs
well (ie, without any visible oscillations or excessive smearing) even when
eBDF4 and SSPRK(5,4) are unstable. See Figure 6 for the corresponding
solution profiles.

The SSPRK(5,4), TVB(4,4) and TVB(5,4) schemes all limit oscillations to
modest levels. In particular, we note that the TV-increase for each of these
schemes first exceeds 107% at an effective CFL number of 0.37. On the other
hand, the TV-increase for eBDF4 first exceeds 107 at an effective CFL num-
ber of 0.24. In most applications the small, bounded oscillations produced
by TVB(5,4) and TVB(4,4) should be quite acceptable. However, fifth- and
higher-order schemes produce larger oscillations. The source of these oscilla-
tions receives some attention in the next subsection.
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Fig. 5. Burgers’ equation: L; errors as a function of the effective CFL number for
selected fourth-order schemes.

4.2.8  Higher-Order Experiments

The L, errors as a function of the effective CFL number are plotted for a selec-
tion of fifth-order schemes in Figure 7. Our tests include the new TVB(5,5)
scheme and the eBDF5 scheme. As a basis for comparison, we also include a
recent nine-stage, fifth-order SSP Runge-Kutta method [16] that utilizes both
upwind- and downwind- biased operators. For theoretical purposes, results

(a): Effective CFL number of 0.275

-0.98
-0.99{
TVB,(5.4)
1t
-1.01} V///
eBDF3
-1.02 ‘ ‘
033 0335 034 0345
X

0.35

(b): Effective CFL number of 0.4

0.5
TVB,(5.4)
= 0 1
-05
-1 ‘ :
1 -05 0 0.5

Fig. 6. Plots of the solution for fourth-order methods applied to the Burgers’ equa-
tion example. (a): Zoom-in of numerical results using an effective CFL number of
0.275. SSPMS4 (4,4) is unstable and SSPRK(5,4) closely agrees with TVB(5,4).
(b): Global solution using an effective CFL number of 0.4. SSPMS(4,4), eBDF4
and SSPRK(5,4) are unstable.
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for the twenty-five step (monotonicy-preserving) extension of the TVB(5,5)
scheme are also included. Since fifth-order SSP Runge-Kutta methods must
use downwind-biased discretizations [10,17], we have taken a fourth-order SSP
Runge-Kutta scheme, SSPRK(5,4), as the startup procedure for all fifth-order
multistep methods.

In this test we find a complete loss of stability for TVB((5,5) at an effective
CFL number of about 0.35, which about 15% larger than SSPRK(9,5) and
56% larger than eBDF5.

Surprisingly, the errors for TVBy(5,5) are noticeably larger than for the ex-
tended scheme TVBgyt(25,5), in particular for small CFL numbers. This is
because the TVB((5,5) scheme, in combination with the fifth-order ENO dis-
cretization, generates some oscillations (the TV-increase averages 0.015 for
effective CFL numbers less than 0.335) whereas the TVBuy(25,5) scheme
does not (the TV-increase there always remains less than 3 x 10715 for effec-
tive CFL numbers less than 0.335). An examination of the solution profiles for
a sample problem (Figure 8) illustrates that a mild oscillation forms near the
rarefaction using the TVBg(5,5), but not using the TVBay¢ (25,5) scheme. We
are investigating the source of this numerical behavior and note that, in gen-
eral, a TVB(k, p) scheme and its extension are expected to produce different
results due to their different startup procedures. As a part of this work, we
are considering improved startup procedures and methods which combine good
linear and nonlinear stability. Our hope is to derive simple, efficient, high-order
schemes which more strictly preserve the total-variation-diminishing property.

_o-
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Effective CFL number

Fig. 7. Burgers’ equation: L; errors as a function of the effective CFL number for
selected fifth-order schemes.

Tests for sixth-order schemes on this Burgers problem were also carried out.
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The overall conclusions were quite similar to those for fifth-order: the new
TVB((7,6) and TVB(6,6) gave the largest steps before producing overflow.
However, in combination with sixth-order ENO discretizations, both schemes
produced oscillations. Also the extension of TVB((7,6) to a monotonicity-
preserving scheme with step number thirty-two showed quite large errors
(larger than for the lower-order results in the previous figures) so here it
seems that the combination of very high-order time stepping with the ENO
discretizations is not entirely successful. Modifications and other spatial dis-
cretizations are currently under study.

Remark 4.1 The above considerations have been based on maximal CFL num-
bers and accuracy in the interior domain of the PDE. For many applications
there are other issues that may be of importance in comparisons between
Runge-Kutta and linear multistep methods.

With respect to storage requirements, the Runge-Kutta methods often have an
advantage. For a general s-stage explicit Runge-Kutta method s + 1 registers
are needed, but there are many schemes for which this can be reduced. Due
to favourable combinations of method parameters, only three registers are re-
quired for the SSPRK(3,3) method, and only four registers for the SSPRK(5,4)
method; see the Tables A.1, A.2 in [21]. For a linear k-step method, with
nonzero coefficients a;, b;, it natural to construct implementations that use 2k
registers of storage. If memory considerations are important, one register can
be saved by storing (ajw,_j + AtbgF,_x) instead of w,_j and F,,_j. Again
there is a possibility of favourable combinations of coefficients, but for our
optimal methods that is not the case.

(a): CFL number of 0.3 (zoom in) (b): CFL number of 0.3 (full solution)
-0.97 ‘ : ‘ ‘
/
-0.98} ,/
TVB t(25,5) /
-0.99} o
TVBO(5,5) d
-1 =~ =7 ] ;C
-1.01}
-1.02¢
-1.03
-0.67 -0.66 -0.65 -0.64 -0.63 -0.62
X X

Fig. 8. Plots of the solution for fifth-order methods applied to the Burgers’ equation
example. (a): Zoom-in of numerical results using an effective CFL number of 0.3.
eBDF5 is unstable and SSPRK(9,5) is similar to TVBay¢(25,5). (b): Global solution
using an effective CFL number of 0.3.
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Another issue that can determine the success of a method, or the failure
thereof, is the accuracy near inflow boundaries of the PDE domain. Here
linear multistep method have a clear advantage. Due to the fact that only ap-
proximations of order p are involved, given inflow boundary data can simply
be used without degradation of accuracy. For Runge-Kutta methods on the
other hand, where low-order internal approximations are used, the accuracy
is often very disappointing near inflow boundaries, and to avoid that, compli-
cated boundary corrections are needed; see, for example, [1] and Sect.I1.2 in

8]-

5 Summary and Conclusions

In this paper new multistep methods are constructed that satisfy the bound-
edness property with optimal step size restrictions. For several cases this actu-
ally leads to methods that are monotonicity-preserving in an extended sense:
there is an equivalent multistep method, with larger step number, that is
monotonicity-preserving with arbitrary starting values. In general, the size of
the constant M in (6) will depend on the starting procedure.

Our theoretical and numerical studies show the superiority of these new meth-
ods over the classical multistep schemes with non-negative coefficients of [19,14,3].
The new multistep methods are also more efficient in our tests than the opti-
mal SSP Runge-Kutta schemes of [10,16,21].

In particular the third- and fourth-order schemes TVB(3,3), TVB(4,4) and
TVBy(5,4) gave very clear and good results. For these methods a substantial
gain may be expected in situations where both monotonicity and high accuracy
are sought.

For fifth- and sixth- order, theoretically optimal schemes were derived that
performed very well on a linear monotonicity test. We also found that the
combination of the TVB((5,5) with a fifth-order ENO spatial discretization
gave good stability on a Burgers’ equation example, but with some visible
oscillations. Since sixth-order schemes also generated some oscillations, we
continue to study fifth- and sixth- order combinations of spatial discretization
and time stepping that are appropriate for hyperbolic conservation laws.

For many applications an order of accuracy up to four will be sufficient, and
then the new bounded multistep methods are recommended in combination
with the ENO discretizations. These schemes produce accurate results that
are essentially free of oscillations.
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A Appendix: Tables of optimal monotone schemes for arbitrary
starting values

In this appendix optimal monotone schemes with non-negative coefficients are
listed for number of steps up to six and order three and four. Also optimal
schemes with non-negative a; and some b; < 0 are listed for number of steps up
to six and order up to six, complementing and improving some of the entries
in [3]. See § 2 for a discussion.

B Appendix: The proof of Theorem 2.1

The conditions on the coefficients for having order 2 are

k-1

k-1
Yy =1 and > (k- +qj k) = kK1, g=1,2.
=0 =0

Let 0; = sgn(b;) and ¢; = a; — K|b;| with K = K,,,. Note that all ¢; > 0. In
terms of these coefficients, the order conditions can also be written as

k—1
> (er—g + Klbp—yl) = 1,
=0
k—1
Yo (Jekj+ (Kj+orj)lbr—jl) = Fk,
7=0
k—1
Y (e + (K5° + 200 5)|br—s]) = K*.
=0

By taking a linear combination of these relations, it is easily seen that
k-1 k—1
Yo (kt(k=1)j=") exy = = > (K(k+(k=1)j—j*)—0on—;(1=k+2j)) bx—;] .

J=0 J=0

All terms in the sum of the left-hand side are non-negative. Hence, at least one
of the terms in the sum of the right-hand side has to be non-positive. Since
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Of—

; = £1, it follows that

1—k+2j
< —
Ikt (k-1)j—j°

for some index 0 < j < k— 1. The maximum value is (k — 1) /k, obtained with

j=0,k—-1
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