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Abstract

The weighted essentially non-oscillatory method (WENO) is an excellent spatial
discretization for hyperbolic partial differential equations with discontinuous solutions.
However, the time-step restriction associated with explicit methods may pose severe
limitations on their use in applications requiring large scale computations. An effi-
cient implicit WENO method is necessary. In this paper, we propose a prototype
flux-implicit WENO (iWENO) method. Numerical tests on classical scalar equations
show that this is a viable and stable method, which requires appropriate time step-
ping methods. Future study will include the examination of such methods as well as
extension of iWENO to systems and higher dimensional problems.

1 Introduction

Explicit weighted essentially non-oscillatory (WENO) methods have proved very popular
in numerical simulations of discontinuous solutions of hyperbolic problems. However, the
numerical CFL condition leads to time-step restrictions which may be prohibitive for large
scale computations. This is a problem frequently seen in finite difference methods and is dealt
with by treating such methods implicitly. However, there are significant logistical problems
in constructing a stable and efficient implicit WENO method. WENO is highly nonlinear,
even for a linear problem, and the computational cost required for an implicit step, both
in the line searches and (if desired) in the computation of the Jacobian, is prohibitive. We
alleviate these problems by considering a prototype flux-implicit WENO (iWENO) method.
In this paper we describe the development of the new iWENO method, validate it and test
it for accuracy and stability on classical scalar test cases, and sketch out future directions
for the study of the iWENO method.
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2 The explicit WENO method

To approximate, in a physically correct way, ([6]) the solution to a conservation law of
the form

ut + f(u)x = 0,

we use a conservative finite difference scheme

ut = −
1

∆x
(f̂j+ 1

2

− f̂j− 1

2

).

The term f̂j+ 1

2

= f̂(uj−k, ..., uj+l) is the numerical flux, and the points xj−k, ..., xj+l constitute

the stencil. To be a reasonable approximation, the numerical flux must be (at least) Lipschitz
continuous and consistent with the physical flux f , i.e. f̂(u, ..., u) = f(u). The numerical flux
determines the numerical method and its properties. Any differences between conservative
numerical semi-discretizations are a result of differences in the numerical flux.

ENO ([3], [4], [9]) schemes search for the locally smoothest stencil and use that stencil
to calculate the numerical fluxes, in order to prevent the shock from being crossed. On the
left of the shock and the right of the shock we have smooth regions, and in those regions
linear stability is enough to ensure nonlinear stability. Oscillations arise when we take
points on opposite sides of the shock to evaluate the derivative at a given point. These
oscillations at the shock location propagate to the smooth regions, destroying the stability
of the solution. The idea behind ENO schemes is stencil switching in order to eliminate
oscillations. The ENO scheme evaluates the smoothness of several stencils near the point
of interest, and picks the smoothest stencil for evaluating the derivative at that point. This
means that the method should avoid picking stencils that cross the shock, and so avoid
stability problems. Liu, Osher and Chan [7] improved upon the ENO method and developed
the WENO method. Each stencil is assigned a weight, which depends on its smoothness.
Then all approximations from all the candidate stencils are summed, each with the weight
assigned to it. The weights are chosen so that in smooth regions we obtain higher order
accuracy whereas near discontinuities the ENO scheme is imitated by assigning near-zero
weights to the stencils that contain discontinuities. To get an rth order ENO scheme, a total
of 2r − 1 points are examined for each flux. Since the WENO scheme uses all the candidate
stencils, a clever choice of weights [5] results in a WENO scheme which is of order 2r − 1 in
smooth regions [8].

To solve
ut + f(u)x = 0

we approximate the spatial derivative using WENO L(u) = −f(u)x, and then use a time-
stepping method to solve the resulting system of ODEs. We split the flux into the positive
and negative parts

f(u) = f+(u) + f−(u).

This can be accomplished in a variety of ways. In this paper we consider the Lax-Friedrichs
flux splitting

f+(u) =
1

2
(f(u) + mu) f−(u) =

1

2
(f(u) − mu) ,

where m = max |f ′(u)|. In this way we ensure that df+

du
≥ 0 and df−

du
≤ 0.
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To calculate the numerical fluxes f̂+
j+ 1

2

and f̂−

j+ 1

2

, we begin by calculating the smoothness

measurements to determine if a shock lies within the stencil. For our fifth order scheme,
these are:

IS+
0 =

13

12

(

f+
j−2 − 2f+

j−1 + f+
j

)2
+

1

4

(

f+
j−2 − 4f+

j−1 + 3f+
j

)2

IS+
1 =

13

12

(

f+
j−1 − 2f+

j + f+
j+1

)2
+

1

4

(

f+
j−1 − f+

j+1

)2

IS+
2 =

13

12

(

f+
j − 2f+

j+1 + f+
j+2

)2
+

1

4

(

3f+
j − 4f+

j+1 + f+
j+2

)2

and

IS−

0 =
13

12

(

f−

j+1 − 2f−

j+2 + f−

j+3

)2
+

1

4

(

3f−

j+1 − 4f−

j+2 + f−

j+3

)2

IS−

1 =
13

12

(

f−

j − 2f−

j+1 + f−

j+2

)2
+

1

4

(

f−

j − f−

j+2

)2

IS−

2 =
13

12

(

f−

j−1 − 2f−

j + f−

j+1

)2
+

1

4

(

f−

j−1 − 4f−

j + 3f−

j+1

)2
.

Next, we use the smoothness measurements to calculate the stencil weights

α±

0 =
1

10

(

1

ǫ + IS±

0

)2

α±

1 =
6

10

(

1

ǫ + IS±

1

)2

α±

2 =
3

10

(

1

ǫ + IS±

2

)2

and

ω±

0 =
α±

0

α±

0 + α±

1 + α±

2

ω±

1 =
α±

1

α±

0 + α±

1 + α±

2

ω±

2 =
α±

2

α±

0 + α±

1 + α±

2

.

Finally, the numerical fluxes are

f̂+
j+ 1

2

= ω+
0

(

2

6
f+

j−2 −
7

6
f+

j−1 +
11

6
f+

j

)

+ ω+
1

(

−
1

6
f+

j−1 +
5

6
f+

j +
2

6
f+

j+1

)

+ ω+
2

(

2

6
f+

j +
5

6
f+

j+1 −
1

6
f+

j+2

)

and

f̂−

j+ 1

2

= ω−

2

(

−
1

6
f−

j−1 +
5

6
f−

j +
2

6
f−

j+1

)

+ ω−

1

(

2

6
f−

j +
5

6
f−

j+1 −
1

6
f−

j+2

)

+ ω−

0

(

11

6
f−

j+1 −
7

6
f−

j+2 +
2

6
f−

j+3

)

.

Thus, each one of these can be written as:

f̂+
j+ 1

2

=
4
∑

i=0

q+
i (j)f+

j−2+i and f̂−

j+ 1

2

=
4
∑

i=0

q−i (j)f+
j−1+i.

Since each of these expressions is simply a weighted sum of the numerical fluxes, we may
rewrite

f+(u)x ≈
1

∆x

(

f̂+
j+ 1

2

− f̂+
j− 1

2

)

= −W+(u)f+(u)
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and

f−(u)x ≈
1

∆x

(

f̂−

j+ 1

2

− f̂−

j− 1

2

)

= −W−(u)f−(u),

for matrices of weights W+(u) and W−(u), defined by a trivial rearrangement and differenc-
ing of the qis. Thus, we can write the WENO approximation

L(u) ≈ −f(u)x

where L(u) = W+(u)f+(u) + W−(u)f−(u).

3 Complexities of implicit WENO methods

Often, a finite difference method can be made implicit in a very simple and straightforward
way. While the WENO method may be viewed, in some sense, as a finite difference method,
the nonlinear weights imply that each point in space and time will use a different finite differ-
ence discretization. In other words, in standard finite difference methods the differentiation
matrices are constant, while in WENO, they depend on un. The primary hurdle in devel-
oping an efficient implicit WENO method is the high computational cost associated with
computing the highly nonlinear weights. Approximating a derivative using explicit WENO
requires costly computations of the weights, and a fully implicit WENO requires significantly
more of these computations within the nonlinear solver. This nonlinear solver is typically
Jacobian based, and the expensive step is usually the inversion of the Jacobian. However,
in the case of implicit WENO, the mere computation of the Jacobian matrix is very costly.
Repeated computations of the Jacobian are necessary for each line search, and this cost can
become prohibitive. This problem could be alleviated by choosing a Jacobian-free nonlinear
solver; however, this approach could lead to problems if the Jacobian is approximated using
differencing which crosses the shock. The WENO method is based on the premise that to
preserve stability, we used stencils which are weighted heavily in a nonlinear manner on one
side of the shock or the other. Therefore, the Jacobian-free method could lead to instability
by violating this rule.

These problems were encountered in [1], where an implicit WENO was developed for
direct convergence to steady state. In that case, there was no time-stepping, only an implicit
solution of the steady state equations. This class of methods solved the steady-state problem

f(u)x = 0 ,

by using the WENO approximation to obtain

L(u) = 0 .

This system of equations was solved iteratively, using a damped Newton method. The
experience gained from that approach indicated that in the nonlinear solver, the computation
of the WENO weights and the analytic computation of the Jacobian was extremely slow,
due to the nonlinearity of WENO.

The idea behind the flux-implicit iWENO method is to treat the differentiation matrices
explicitly and the flux implicitly. In this way, each implicit-solver iWENO step has a com-
putational cost equivalent to that in a standard finite difference scheme. We anticipate that
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the combination of the flux-implicit approach and the relaxed time step restriction of the
implicit solver will make the implicit method cost-effective relative to the explicit method.

4 The flux-implicit approach

In the following, we treat the scalar conservation law

ut + f(u)x = 0

as described above, where the spatial differencing is accomplished via the WENO approxi-
mation

L(u) = W+(u)f+(u) + W−(u)f−(u).

We suggest at this point thinking of the iWENO operator as a product of two operators,
W (u)F (u). Clearly, that is not exactly correct in this context. However, for simplicity,
we will use this formulation at present, and discuss the generalization later. We consider
W (u) to be the differentiation matrix containing the WENO weights and F (u) to be some
combination of the numerical fluxes.

A simple first order prototype of the flux implicit iWENO method can be viewed as a
predictor-corrector scheme:

ũ = un + ∆tW (un)F (un)

un+1 = un + ∆tW (ũ)F (un+1) .

The quantity ũ is computed in order to predict the weights in W . The value of ũ is obtained
by an explicit forward-Euler time step. The corrector step is then an implicit Euler method,
which is implicit only in F , but not in the highly nonlinear W . Both the predictor and the
corrector steps are of the same order; however, the use of the implicit corrector step may allow
a larger time step for stability than a purely explicit method would allow. Now the implicit
step in iWENO is of the same cost as the implicit step of any usual finite difference scheme.
However, the matrix W may not have the nice features, such as symmetry, associated with
standard finite difference methods.

In general, this predictor-corrector approach involves using a known explicit method
(either Runge-Kutta or multi step) of the desired order to evaluate ũ, and then calculate the
matrix of weights W (ũ). To step forward in time, we use any implicit method of the desired
order, but we now treat W (ũ) as a constant matrix.

A flux-implicit approach which does not involve a separate predictor is also possible. For
example, the simplest first order prototype would be

un+1 = un + ∆tW (un)F (un+1) .

In this case, the weights are not predicted at time level tn+1, but rather the weights at time
tn are used. There is the danger, in this type of method, that the stencil determined by the
weights at time tn will cross the shock at time tn+1 and lead to instability.
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To extend these ideas, one may consider any M-stage Runge-Kutta method of the form

u(0) = un

u(l) =
l
∑

j=0

αlju
(j) + ∆t

l
∑

j=0

βljW (u(ij))F (u(j)), where each ij < l and l = 1, .., M

un+1 = u(M) .

As long as W (·) is based on an already-computed quantity, this method has the advantages
of a flux-implicit iWENO. The constants αmj and βmj need to be chosen carefully to ensure
the method is of the correct order.

The formulations of the methods in this paper are such that the general case

L(u) = W+(u)F+(u) + W−(u)F−(u)

can be implemented as easily as the simplified case L(u) = W (u)F (u), by simply adding in
the corresponding terms. More complicated formulations are possible, however, one must
confirm that the general case can be implemented.

In the numerical section, we solve linear and nonlinear scalar equations with several types
of predictor-corrector iWENO methods. The aim of these implicit methods is to raise the
value of the time step which is allowed for stability, while reducing the cost of the implicit
WENO step to that of a standard implicit finite difference scheme.

5 Numerical Results

For the numerical experiments, we considered two classical scalar test cases, and time-
stepping methods of order up to three.
Example 1: The first set of examples is a linear wave equation

ut + ux = 0 0 ≤ x ≤ 2

with periodic boundary conditions and two sets of initial conditions. We use the smooth
initial condition u(x, 0) = sin(πx) to verify the spatial and temporal order of the schemes,
and the step-function initial condition

u(x, 0) =

{

1 if 0 ≤ x < 1
0 otherwise

to observe the effect of iWENO on a discontinuous problem.

1. We begin with two first order methods:
1a) A first order flux-implicit Euler method where the weights are computed explicitly:

un+1 = un + ∆tW (un)F (un+1)
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and
1b) A method consisting of an explicit first order forward Euler predictor and first
order implicit Euler corrector:

ũ = un + ∆tW (un)F (un)

un+1 = un + ∆tW (ũ)F (un+1)

Both methods show first order accuracy in time using the smooth initial condition.
We tested the stability of the method by solving the linear equation with step function
initial conditions up to final time Tf = 5.0 and for number of points N up to 200.
Both methods were stable for all values of ∆t = c∆x

m
, for c ≤ 10 and m = max |f ′(u)|.

It became apparent that the methods would continue to be stable as we raise the step
size, since both methods are very diffusive and the step function became increasingly
smeared as ∆t became larger.

The first method did not use a predictor to approximate the weights for the implicit
method. We feared this may lead to instability because of the possibility that the stencil
defined at time tn will cross the shock at time tn+1. However, in our computations we
observe that both methods behave very much the same. We attribute this to the strong
diffusivity of the methods which, in convecting the discontinuous initial condition,
smeared it to the extent that in only a few time steps the shock was completely smeared
so that the solution profile was essentially smooth.

2. We proceed with the second order methods:
2a) A first order explicit Euler predictor and a second order implicit Crank-Nicolson
corrector ([2]):

ũ = un + ∆tW (un)F (un)

un+1 = un +
1

2
∆tW (un)F (un) +

1

2
∆tW (ũ)F (un+1)

and
2b) A second order explicit Runge-Kutta predictor [9] and second order implicit Crank-
Nicolson corrector [2]:

u(1) = un + ∆tW (un)F (un)

ũ =
1

2
un +

1

2
u(1) +

1

2
∆tW (u(1))F (u(1))

un+1 = un +
1

2
∆tW (un)F (un) +

1

2
∆tW (ũ)F (un+1) .

and
2c) A first order flux-implicit Euler predictor and a second order implicit Crank-
Nicolson corrector [2]:

ũ = un + ∆tW (un)F (ũ)

un+1 = un +
1

2
∆tW (un)F (un) +

1

2
∆tW (ũ)F (un+1)
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Although the first and third method use only a first order predictor, the predicted
terms enter into the final formula multiplied by ∆t, and thus we can afford to use a
predictor of one order less than the corrector. Accuracy tests on the linear problem
with smooth initial conditions demonstrate that the iWENO method is indeed fifth
order in space (tested with method(2c), see Table 1) and that methods (2a), (2b) and
(2c) give very similar results and that these implicit methods are second order in time
(Table 2).

In terms of stability considerations, the two methods (2a) and (2b) behave similarly.
Both methods show non-oscillatory results for CFL values c < 1

2
. Interestingly, the

methods develop an oscillation on either side of the shock for CFL values 1
2
≤ c ≤ 1.

However, in tests up to final time Tf = 4.0 and number of points N = 200, this
oscillation remains the same or decays and does not develop into instability (Figure 1).
As the figure shows, the oscillation in method (2b) is smaller than that of method (2a)
and decays over time. The third method (2c), which features a flux-implicit predictor,
is more stable – no oscillation appears for values c < 1. Instability is observed for all
three methods at CFL values c > 1.

A comparison with the explicit second order Runge-Kutta method SSP(2,2) [9]:

u(1) = un + ∆tW (un)F (un)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tW (u(1))F (u(1))

shows that this method is stable for values of c < 1
2
, and becomes gradually unstable

afterwards. For this example, using the iWENO method with these implicit second
order methods does not confer a significant advantage in terms of allowed ∆t for
stability. Figure 2 shows a comparison of all four methods for c = 1

2
, c = 3

4
, c = 1, and

c = 5
4
, with N = 40 points, with ∆t = c∆x and convected over 100 time steps.

3. Finally, we consider third order methods:
3a) A second order explicit Adams-Bashforth predictor and a third order implicit
Adams-Moulton corrector [2]:

ũ = un +
3

2
∆tW (un)F (un) −

1

2
∆tW (un−1)F (un−1)

un+1 = un + ∆t

(

5

12
W (ũ)F (un+1) +

8

12
W (un)F (un) −

1

12
W (un−1)F (un−1)

)

.

and
3b) A second order extrapolated BDF predictor and a third order BDF corrector [2]:

ũ =
4

3
un −

1

3
un−1 + ∆t

(

4

3
W (un)F (un) −

2

3
∆tW (un−1)F (un−1)

)

un+1 =
18

11
un −

9

11
un−1 +

2

11
un−2 +

6

11
∆tW (ũ)F (un+1) .

Accuracy tests show, as expected, third order accuracy (Table 3). The results from
these methods were very interesting (Figure 3). Method 3b was stable for CFL values
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c ≤ 0.5, but showed oscillations or signs of instability for larger values. Method 3a was
stable for c ≤ 1.

In comparison,
3c) the explicit third order SSP Runge Kutta [9]:

u(1) = un + ∆tW (un)F (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tW (u(1))F (u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tW (u(2))F (u(2))

was also stable for c ≤ 1. A comparison of the three methods (3a), (3b) and (3c) is
presented in Figure 3.

3d) the explicit third order Runge-Kutta predictor and implicit third order Adams-
Moulton corrector:

u(1) = un + ∆tW (un)F (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tW (u(1))F (u(1))

ũ =
1

3
un +

2

3
u(2) +

2

3
∆tW (u(2))F (u(2))

un+1 = un + ∆t

(

5

12
W (ũ)F (un+1) +

8

12
W (un)F (un) −

1

12
W (un−1)F (un−1)

)

.

gave significantly more stable results. Figure 4 shows a comparison of methods (3a),
(3c) and (3d). It is evident that in terms of computational cost the explicit SSP
Runge-Kutta still outperforms all three of the implicit methods.

The linear test cases demonstrated the spatial order of accuracy of the iWENO and
the time-accuracy of the time-stepping methods. Although the linear test cases showed
that iWENO is reliable, the stability results were heavily dependent on the time stepping
method, and were discouraging. We did not observe any significant advantages of the implicit
methods in terms of step size for order two or higher. The nonlinear example provides a
clearer picture of the need for appropriate time stepping:

Example 2: The second example is the nonlinear Burgers’ equation

ut +

(

u2

2

)

x

= 0

with periodic boundary conditions, and initial condition u(x, 0) = 1
2

+ 1
4
sin(πx).

This problem was solved using methods (1b), (2a), (2b) and (2c) above. In the case of
a nonlinear equation, a nonlinear solver must be used to solve the system resulting from
the implicit step. Whenever possible we use a predicted value ũ as the initial guess for the
nonlinear solver. This is possible in the case of (1b), (2a) and (2b). However, in the case of
(2c), the predictor itself is implicit and requires an initial guess. In this case we use un as
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the initial guess for the solver used for ũ, and ũ as the initial guess for the solver used for
un+1. Although there is the possiblility that the nonlinear solver for ũ will not converge due
to the initial guess crossing the shock, this was not observed in our simulations.

We used the first order time stepping method, consisting of the first order forward Euler
predictor and first order implicit Euler corrector (1b) to solve the nonlinear equation. As
for the linear example, this implicit solver is stable for all step sizes ∆t which we tested
(corresponding to a CFL value up to c = 10). We compared these results to those obtained
from using an explicit forward Euler method for time-stepping. As expected, the explicit
solver is only stable for values c ≤ 0.5. The first order implicit method is extremely stable
and extremely diffusive; the price of the stability is the smearing of the solution. The implicit
methods (2a), (2b), and (2c) are stable for values c ≤ 1. The allowable timestep is doubled
by using the implicit methods; however, when considering the cost of the implicit methods
it is evident that they do not outperform the explicit Runge-Kutta method SSP(2,2). These
numerical results indicate that the flux-implicit iWENO is a viable approach, and that the
first order method performs as desired. Further work is required to find higher order time-
stepping method which preserves the stability properties of the iWENO coupled with implicit
Euler.

6 Conclusions and future directions

The main conclusion of this paper is that the success or failure of the flux-implicit iWENO
spatial discretization depends heavily on the time-discretization used, as well as the numer-
ical problem. When coupled with an appropriate time discretization, the iWENO method
performs beautifully. Thus, we can turn our attention in future work to the task of finding
an efficient and stable combination of time-discretization and iWENO. There is an inevitable
trade-off between stability and diffusion, and a good balance may be difficult to strike.

In this context, future work shall consider different choices of predictor-corrector pairs,
the effect of strong-stability-preserving methods, and diagonally split Runge-Kutta methods.
Further study is also needed to evaluate the choice of nonlinear solvers. In this work, we
used MATLAB’s Jacobian based solver. It is possible to let MATLAB approximate the
Jacobian using finite differences, however the stability implications of such a procedure are
unclear and need to be examined closely. Finally, based on our positive results with scalar
one dimensional problems, the iWENO idea clearly should be extended to systems and
multidimensional problems.
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Table 1: Verification of the spatial order of accuracy for of iWENO, in conjunction with
method (2c). ∆t = 0.0001 to final time Tf = 0.01.

L2 error order
N = 20 1.18 ×10−5

N = 30 1.41 ×10−6 5.24
N = 40 2.98 ×10−7 5.40
N = 60 3.70 ×10−8 5.14
N = 80 8.55 ×10−9 5.09
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Table 2: L2 errors and order of accuracy for the second order methods with ∆t = 0.4∆x,
computed to final time Tf = 1.0.

method 2a method 2b method 2c
error order error order error order

N = 20 3.83 ×10−3 3.83 ×10−3 3.83 ×10−3

N = 40 8.51 ×10−4 2.17 8.51 ×10−4 2.17 8.51 ×10−3 2.17
N = 60 3.63 ×10−4 2.10 3.63 ×10−4 2.10 3.63 ×10−4 2.10
N = 80 1.99 ×10−4 2.08 1.99 ×10−4 2.08 1.99 ×10−4 2.08
N = 100 1.25 ×10−4 2.07 1.25 ×10−4 2.07 1.25 ×10−4 2.07
N = 120 8.63 ×10−5 2.06 8.63 ×10−5 2.06 8.63 ×10−5 2.06
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Table 3: L2 errors and order of accuracy for the third order methods (3a) and (3b) with
∆t = 1

2
∆x, computed to final time Tf = 1.0.

method 3a method 3b
error order error order

N = 20 8.80 ×10−4 7.58 ×10−4

N = 40 1.30 ×10−5 6.07 1.11 ×10−4 2.76
N = 60 3.83 ×10−6 3.01 3.66 ×10−5 2.74
N = 80 2.10 ×10−6 2.08 1.60 ×10−5 2.86
N = 100 1.21 ×10−6 2.48 8.40 ×10−6 2.91
N = 120 7.45 ×10−7 2.67 4.92 ×10−6 2.93
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List of Captions

1. Oscillation forms on either side of the shock. Algorithms (2a) on left and (2b) on right.
Using ∆t = ∆x, for N = 100. Note that the oscillation in method (2b) is smaller than
that of method (2a), and decays over time. The codes were run for 40 steps (dashed
line), 120 steps (dotted line) and 160 steps (solid line).

2. Linear problem: algorithms 2a (dashed line), 2b (dash-dot), 2c (solid line), and SSP(2,2)
(dotted line) using ∆t = c∆x, for N = 40, over 100 time steps. Top left: c = 0.5, top
right: c = 0.75, bottom left: c = 1., bottom right: c = 1.25 (instability)

3. Linear problem: algorithms 3a (solid line), 3b (dashed line) and 3c (dotted line), using
∆t = c∆x, for N = 100, over 40 time steps. Top left c = 0.5 all methods are stable.
Top right c = 0.75 methods 3a and 3c are stable. Bottom left c = 1.0, method 3a
shows an oscillation near the shock, method 3b is unstable, and method 3c is starting
to exhibit excessive smearing. Bottom right c = 1.5 all methods are unreliable.

4. Linear problem: algorithms 3a (dotted line), 3c (dashed line), 3d (solid line), using
∆t = c∆x, for N = 100, over 20 time steps. Left c = 0.5, middle c = 1.0, right c = 1.5.
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Figure 1: Oscillation forms on either side of the shock. Algorithms (2a) on left and (2b) on
right. Using ∆t = ∆x, for N = 100. Note that the oscillation in method (2b) is smaller
than that of method (2a), and decays over time. The codes were run for 40 steps (dashed
line), 120 steps (dotted line) and 160 steps (solid line).
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Figure 2: Linear problem: algorithms 2a (dashed line), 2b (dash-dot), 2c (solid line), and
SSP(2,2) (dotted line) using ∆t = c∆x, for N = 40, over 100 time steps. Top left: c = 0.5,
top right: c = 0.75, bottom left: c = 1., bottom right: c = 1.25 (instability)
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Figure 3: Linear problem: algorithms 3a (solid line), 3b (dashed line) and 3c (dotted line),
using ∆t = c∆x, for N = 100, over 40 time steps. Top left c = 0.5 all methods are stable.
Top right c = 0.75 methods 3a and 3c are stable. Bottom left c = 1.0, method 3a shows
an oscillation near the shock, method 3b is unstable, and method 3c is starting to exhibit
excessive smearing. Bottom right c = 1.5 all methods are unreliable.
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Figure 4: Linear problem: algorithms 3a (dotted line), 3c (dashed line), 3d (solid line), using
∆t = c∆x, for N = 100, over 20 time steps. Left c = 0.5, middle c = 1.0, right c = 1.5.
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