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Abstract

In previous work, we introduced a simple algorithm for produc-
ing motion by mean curvature of a surface, in which the motion is
generated by alternately diffusing and renormalizing a characteristic
function. This procedure is interesting due to its extreme simplicity,
and because it isolates the connection between diffusion and curva-
ture motion. However, it makes sense only for surfaces, i.e. objects of
dimension d — 1 inside of R.

In this paper, we generalize diffusion-generated motion to a pro-
cedure that can be applied to objects of any dimension k inside of
R? k < d. We focus on generating the curvature motion of filaments,
i.e. curves in R?, since this is an important special case which also
illustrates the general ideas. The method for filaments consists of
applying diffusion to a complex valued function whose values wind
around the filament, followed by normalization. We motivate this ap-
proach by considering the essential features of the complex Ginzburg-
Landau equation, which is a reaction-diffusion PDE that describes
the formation and propagation of filamentary structures. The new
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algorithm naturally captures topological merging and breaking of fil-
aments without fattening curves. It also gives an improved computa-
tional efficiency over direct numerical solution of the Ginzburg-Landau
equation.

We justify the new algorithm with asymptotic analysis and numer-
ical experiments for the curvature motion of filaments in R3. However,
we do not have a rigorous proof of its convergence. We also discuss
the generalization of this procedure for motion by mean curvature of
objects of arbitrary codimension, as well as generalizations that allow
for a large class of velocity laws.

1 Introduction

Diffusion-generated motion by mean curvature is a particularly simple and ro-
bust algorithm for producing motion by mean curvature of a surface [16, 17].
The major goal underlying this work is to generalize this algorithm from sur-
faces (dimension d — 1 inside R?) to objects of arbitrary dimension k inside
R?. To guide the generalization and connect it to a class of interesting prob-
lems, we concentrate on the special case of producing motion by curvature
of a curve—or “filament”—in three dimensions, and return to the general
dimensional case only towards the end.

The motion of filaments is of particular interest because many physical
and mathematical systems exhibit the formation and propagation of fila-
mentary structures. Notable examples include magnetic flux tubes trapped
in superconductors, vortex filaments in inviscid fluids, the centers of scroll
waves in excitable media, biological polymers such as protein and DNA, and
skeleton curves extracted from processing 3-D images in computer vision.

Asymptotic models for these processes often yield equations of motion for
a curve moving with a velocity that is a function of its local geometry, i.e. a
function of the local normal and binormal direction, curvature, torsion, and
higher space and time derivatives of these quantities. For example, studies
of models for superconductors and excitable media predict that their vortex
filaments evolve asymptotically with a speed proportional to curvature [6, 25].

Given such models, it becomes important to consider algorithms which
can realize geometric filament motions in simple, efficient and accurate ways,
and which are amenable to mathematical analysis. Designing suitable algo-
rithms is complicated by the fact that in many problems the filaments can
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merge or break up. It is particularly challenging to find algorithms that
retain their simplicity, yet are robust enough to capture these topological
transitions.

For surfaces (or, generally, codimension one objects) the level set method
of Osher and Sethian [18] was introduced to compute (and define) arbitrary
curvature-dependent surface motions, including topological changes. This
provides a PDE based method for motion by mean curvature, including the
pinch-offs which can occur in three dimensions. Standard numerical PDE
methods apply to accurately discretize the equations of motion. However,
the original level set method does not directly apply to objects of higher codi-
mension, such as filaments. The level set method was ultimately extended to
arbitrary codimension [1]. In this approach, the object is represented by its
squared distance function, or any other similar smooth function. The modifi-
cation leads to two significant practical difficulties. First, the representation
is not robust: A perturbation of the level set function ¢ can inadvertently
break up the filament since its representation is given by {Z : ¢(¥) < €}
for a small, positive € and ¢ > 0. Second, the method has the undesirable
property that filaments tend to develop interiors whenever mergers occur.
See [3] for a detailed discussion on this “fattening phenomenon.”

Alternatively, the curvature motion of filaments (or the mean curvature
motion of surfaces) may be approximated using reaction-diffusion models
such as the complex Ginzburg-Landau equation. These phase field models
are reviewed in Sections 2.1 and 3.2. Briefly, these methods have the im-
portant advantage that they automatically capture the curvature motion of
filaments including topological change without fattening curves. When used
in computation, however, the spatial discretization must resolve a thin reac-
tion zone in order to accurately compute the motion. Since the width of the
front is O(€), the only remedy is to use a mesh spacing which is much less
than €, which can be impractical numerically [17].

To overcome this limitation in the case of surface motion, an algorithm
based on an idealization of reaction-diffusion was presented in [16, 17]. This
algorithm is described in detail in Section 2.2, but it essentially consists of
moving a set boundary by alternately “diffusing” the set—i.e. applying the
linear diffusion evolution equation to the set’s characteristic function for a
short time—and then recovering a new set via a “sharpening” step in which
values of the diffused characteristic function are re-normalized to 0 or 1,
whichever is closer. This surprisingly simple “diffusion-generated motion by
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mean curvature” algorithm automatically captures topological change and
has a direct extension to a variety of interesting anisotropic motions [10, 23,
11] as well as the motion of triple point junctions and arbitrary networks of
surfaces [16, 15, 17, 21]. Furthermore, the method has the advantage that it
can be discretized efficiently and accurately using adaptive grid refinement
with fast Fourier transforms [22]. Unfortunately, the original method does
not apply to objects with higher codimension, such as filaments.

In this present work, we generalize the original diffusion generated motion
algorithm to filaments, via a natural idealization of the complex Ginzburg-
Landau model. This diffusion-generated filament motion naturally computes
the (vector) mean curvature motion, including topological changes without
curve fattening. The method also gives improved computational efficiency
over reaction-diffusion models since it does not require resolving an artificial
small scale parameter, e. Furthermore, the method has a variety of nat-
ural extensions. These include the motion by (vector) mean curvature of
objects of arbitrary codimension, as well as the anisotropic curvature motion
of filaments.

The outline of the paper is as follows. In Section 2, we review diffusion-
generated motion and its connection to the Ginzburg-Landau equation. Sec-
tion 3 begins by reviewing the complex Ginzburg-Landau equation. Using
this phase field model as an inspiration and motivation, a diffusion-generated
algorithm for the curvature-dependent motion of filaments is derived. In Sec-
tion 4, we give an asymptotic justification that diffusion-generated filament
motion gives motion by curvature in the normal direction. Section 5 reports
on a variety of experiments validating our algorithm. Finally, in Section 6
we discuss the extension to arbitrary codimension, extensions to obtain other
velocity laws, and other possible variations on this approach.

2 Diffusion-Generated Motion of Surfaces

In this section, we review diffusion-generated motion for surfaces of codimen-
sion 1, and its connection to the Ginzburg-Landau equation. Later sections
will use this same methodology to develop diffusion based methods for the
curvature dependent motion of filaments.
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2.1 The Ginzburg-Landau Equation

The real-valued Ginzburg-Landau equation (or “phase-field equation”) is a
well-known PDE model in which sharp reaction fronts form and propagate.
This provides a robust means of describing interface dynamics. The equation
has the form

1
up = Vu — 6—2f(u)

where € > 0 is a small parameter and f is the derivative of a double well
potential (so that the PDE also has a variational formulation as steepest
descent minimization of an energy functional). For example, if we take

ut u?

flu) = (7 = 5) = 1)

and define the interface precisely as the zero level set of u, then in the asymp-
totic limit as € — 0 the interface moves with a normal velocity equal to the
mean curvature of the front (see, e.g., [8]).

From a theoretical and computational standpoint, this phase field model
has the benefit that topological shape changes such as merger and pinch
off are treated automatically. Indeed, whenever two curves intersect this
approach automatically selects the solution which (locally) produces the most
rapid curve shortening. This is unlike solutions to level set PDEs which
can develop interiors. See Fig. 1. Unfortunately, if phase field PDEs are
used in computation it is necessary to resolve the thin O(e) wide reaction
zone to obtain numerical accuracy, and in turn the model only gives the
desired motion in the € — 0 limit. As a result, the numerical grid size Ax is
constrained by Ar < € < L, where L is the scale of the radius of curvature
of the interface [17]. This restriction can make calculations too slow for
practical use, and in any case is much worse than the natural resolution
requirement of interface, Ax < L.

Fortunately, improved efficiency with optimal curve shortening can be
obtained by formally “splitting” the reaction-diffusion equation into its com-
ponent parts. This splitting yields a simple diffusion-generated motion, which
is the focus of the next section.
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Figure 1: Under curvature motion, methods which capture the interface
produce different results when intersections occur. (a) For nonsmooth initial
data, curves can develop interiors using level set methods. (b) A non-optimal
curve shortening solution. (c) If 3 > 6; then the most rapid curve short-
ening occurs when region one pinches off. Remarkably, this “optimal curve
shortening” solution is automatically selected by the phase field approach as
well as the diffusion-generated algorithm discussed in Section 2.2.
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2.2 Diffusion-Generated Motion by Mean Curvature

Rather than obtaining motion by mean curvature of a surface via a singular
reaction-diffusion model, it is possible to use an idealized reaction-diffusion
process that achieves the desired motion directly, without introducing arti-
ficial small scales [16, 17]. The algorithm can be motivated by considering
a formal time splitting of the reaction-diffusion processes. If we start from
any initial data function x(Z,to), and apply the reaction kinetics for a short
time At,

_ 1_
o —6—2x(|X|2—1)

X(Z,0) = x(Zt)

we obtain an intermediate result x(Z, At), with values that have been strongly
driven towards the stable equilibrium values +1. We follow this by the dif-
fusion process

Xt = V2X
X(7,0) = x(7,At)

for a time At, to obtain the reaction-diffusion update (&, ¢y + At). If we
take the formal e — 0 limit in the reaction process, the reaction step drives
all values completely to the nearest equilibrium value, and reduces to the
simple normalization procedure

_ 1 ifxy>0
X7\ -1 otherwise

which can also be written as N
X=
X
In so doing, we obtain the diffusion-generated motion by mean curvature

algorithm! [16, 17].

ALGORITHM DGM
GIVEN: An initial region R.

"We have rephrased the algorithm slightly from the authors’ original description to
facilitate the generalization of Section 3.2.
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BEGIN
(1) “Initialize”: Set x equal to any function that is positive inside
and negative outside R.
(2) Repeat for all steps:
(a) “Normalize”: y = o
(b) “Diffuse”: Starting from Y, evolve x for a time At according to x; = V2y.
END

The location of the interface is given by the zero level set of .

It is important to note that formal derivation given in no way proves this
scheme produces motion by mean curvature in the continuous time limit, nor
does it even strongly suggest that this might be true. This is because the
€ — 0 limit, followed by the continuous time limit At — 0, is by no means
guaranteed to be equivalent to the standard convergent time-splitting, which
in this case would require At and € go to zero simultaneously in such a way
that At << e. Thus while the above formalism yields the diffusion generated
motion algorithm, it in no way guarantees that this algorithm works, i.e.
gives the same interface motion (motion by mean curvature) as the singular
limit of the reaction-diffusion PDE. Indeed, such naive limit-taking is quite
likely to give totally wrong behavior in a singular perturbation problem.
Nonetheless, the resulting algorithm does indeed produce motion by mean
curvature in the At — 0 continuous time limit, but this fact requires totally
new justification, independent of the properties of reaction-diffusion model
that motivated the scheme.

Because of this, to appreciate why the method works it is better to forget
the formal derivation, and simply note that the diffusion step of the algorithm
causes a curvature-dependent blurring of the set boundary. Thus the updated
boundary will be displaced by a curvature dependent distance, and a formal
analysis of the diffusion equation [15, 16, 17] shows this should result in
precisely motion by mean curvature. Indeed, a variety of rigorous proofs
have been given to show this simple algorithm converges to motion by mean
curvature in any number of dimensions as the time step size goes to zero
7,2, 11].

This algorithm has several remarkable properties. Similar to the phase
field approach, motion by mean curvature is obtained without ever directly
computing the mean curvature and topological mergers such as pinch off are
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captured with no special algorithmic procedures. Indeed, it is easily seen
that whenever two curves intersect this approach automatically selects the
solution which (locally) produces the most rapid curve shortening. Further-
more, diffusion generated motion enjoys an important advantage over the
phase field approach: Phase-field models introduce an artificial small length
scale—the width of the reaction zone—which, for numerical work, must be
resolved by a computational grid or all accuracy is lost for the computed
interface motion. (In fact, if the grid spacing is not smaller than e, the initial
fronts are actually frozen in place, and no front motion occurs at all [17].)
In contrast, diffusion-generated motion has no such artificial small scales.
For numerical work, the computational method need only resolve the natu-
ral length scales in the problem, i.e. the curvatures of the evolving surface.
Thus diffusion-generated motion has in effect passed to the asymptotic limit
of the phase-field class of models, obtaining a simplified and more accurate
evolution scheme in the process.

3 Diffusion-Generated Motion of Filaments

We have seen that the real-valued Ginzburg-Landau equation gives an intu-
ition for deriving a diffusion-generated algorithm for motion by mean curva-
ture for surfaces (of codimension one). In this section, we review the com-
plex Ginzburg-Landau model for evolving filaments with a normal velocity
equal to the (vector) curvature. Then, following the formal derivation of the
of the previous section, we idealize this reaction-diffusion model to obtain
a diffusion-generated algorithm for the curvature-dependent motion of fila-
ments in three dimensions. Later sections will justify our proposed method
with asymptotics and numerical experiments, and also extend it to arbitrary
dimensions and codimensions.

3.1 The Complex Ginzburg-Landau Equation
The complex Ginzburg-Landau equation is:
1
up = Au — 6—2u(|u|2 - 1), (1)

where u(z,t) is a complex scalar and 0 < € < 1. is a basic model for under-
standing the motion of phase defects (singularities). For € R? the defects
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are generically supported on the one dimensional curve (filament) where |u€|
vanishes. Equation (1) is the magnetic field-free case of the time dependent
Ginzburg-Landau system, which models the mixed states in type-II super-
conductors where magnetic flux carrying normal filaments are embedded in
a superconducting matrix, [6]. The complex scalar u€ is an order parameter,
representing normal phase if [u€| is close to zero and super phase if close to
one, and € < 1 is the effective diameter of the magnetic flux core. Equation
(1) is also a generic amplitude equation describing instabilities near bifur-
cation points in dissipative systems, known as the Landau-Stuart equation,
[13].

Asymptotic analysis can be used to extract the ¢ — 0 limiting behavior
of solutions. For initial data u(z,0) vanishing on a filament I'y and having
winding number one around it, formal asymptotic derivation [19] shows that
solution evolves to leading order as a complex scalar vanishing along the
filament I'; which is generated from 'y as motion by curvature along the
normal. If the filaments are nearly parallel, rigorous results are established
in [14] on their dynamics on the O(log ¢) time scale.

Numerically, small € introduces small length and time scales into the dy-
namics. Consequently, an accurate direct simulation of (1) has to resolve
the core size and reaction rate, an expensive task in three dimensions. How-
ever, it turns out we can capture the desired limiting filament dynamics with
a complex diffusion-generated motion algorithm obtained by idealizing the
effect of the strong reaction in (1).

3.2 Complex Diffusion-Generated Motion

Similar to the case of diffusion-generated motion, a formal splitting method
can be applied to the complex Ginzburg-Landau equation to obtain an al-
gorithm for motion by mean curvature of filaments. In the reaction step, an
initial complex-valued x(Z, ty) is driven towards one of its stable equilibrium
values e by the reaction kinetics,

e = —5x(xP-1)
X(Z,0) = x(Z,t)
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for a time At to obtain an intermediate result y(Z, At). This result is sub-
sequently diffused for a time At,

Xt = V2X
xX(@t) = x(7,At)

to obtain the desired update x (&, ¢y + At). By replacing the reaction step
by its formal limit as e — 0, it becomes the simple normalization to a unit

complex number
— X
X =
X
and we obtain the following method for (hopefully) evolving filaments with

a normal velocity equal to curvature:

ALGORITHM CDGM
GIVEN: An initial filament.

BEGIN
(1) “Initialize”: Set x so that its “center of winding” coincides with the filament.
Le. set x so that its winding number is nonzero around any closed curve
that winds around the filament. See next section.
(2) Repeat for all steps:
(a) “Normalize™: y = 7
(b) “Diffuse”: Starting from Y, evolve x for a time At according to x; = VZy.
END

The location of the interface is given by the zero contour of x (or, equivalently,
its center of winding, though this is more difficult to locate in practice).

As we shall see in the analysis of Section 4, this simple splitting method
captures the leading order behavior of the complex Ginzburg-Landau equa-
tion: L.e., it produces a normal velocity equal to the curvature of the filament
without ever directly computing curvature. Topological mergers are also cap-
tured with no special algorithmic procedures. In particular, filaments do not
develop interiors (unlike level set methods for filament motion — see [3]) and
a good agreement with optimal curve shortening (see Fig. 1) is observed.
Furthermore, the method enjoys some important computational and theoret-
ical advantages over phase field methods. For example, the ALGORITHM
CDGM does not introduce any small spatial scale e. Thus, it need only
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resolve the natural length scales of the problem (i.e., the curvature of the
evolving filament) rather than the width, €, of the reaction zone. Also note
that the method has the advantage that the diffusion step is entirely linear
with the only nonlinear part being the final, trivial, normalization step.

We now complete our description of the algorithm with a discussion on
the initialization of y.

3.3 Initialization of y

To apply the ALGORITHM CDGM, an initial value of x is required. This
value may be determined in a number of ways, depending on the problem.

If the filament is already defined implicitly as the zero of a function w aris-
ing from a complex Ginzburg-Landau equation, then we simply set y = u to
initialize. But, in general, we need to construct a y : R* — C which implic-
itly captures the position of the filament. We use the same representation
as in the complex Ginzburg-Landau equation. Specifically, we construct a
complex-valued x so that the winding number of y(Z) (with respect to zero
in the complex plane) is nonzero when # moves around any closed loop that
encircles the filament. Along other loops, however, the winding number must
be zero to avoid creating spurious filaments. See Fig. 2.

In any such construction, the basic idea is to mimic the way e winds
around the origin in the complex plane. Thus we will define x(Z) = €@,
where 6(Z) is some angle variable defined on all of R*® that winds around
the filament similar to the way the polar angle winds around the z axis in
a cylindrical coordinate system. There are a number of convenient ways to
define such an angular variable relative to a given filament. For example, we
may define a planes and reference axis through each point on the filament,
so that the planes fill out R*(see Fig. 3a). The initialization on a particular
plane is then given by x(Z) = exp(if(Z)) where 6(Z) the angle function in
that plane, measured relative to the reference axis in the plane. As shown
in Fig. 3b, this type of initialization is particularly straightforward whenever
the filament can be represented as a function of z in some coordinate system.
Looping structures such as rings and linked rings are also easily initialized in
this manner. See Section 5.

Alternatively, whenever two surfaces can be found whose intersection
gives the desired filament, a simple shape-based initialization can be used
(see Fig. 4). Here, we set a function xg. equal to +1 inside and —1 outside
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Figure 2: An initial y is chosen so that its winding number (with respect to
zero) is nonzero around any closed curve v that winds around the filament.
For all other curves (e.g., ), the winding number is zero.

the first surface. Similarly, we set xr,, equal to 4+ inside and —i outside the
second surface. The initial value of y is then given naturally as the sum of
Xge and X.,. Notice that the winding number condition is always satisfied
by this representation. Of course, from a practical standpoint, the choice
of surfaces will have a significant impact on the truncation error constant.
The most desirable surfaces would intersect orthogonally and be as flat as
possible—unnecessarily curved choices will introduce additional curvature-
dependent errors (all of which vanish as At — 0).

We now direct our attention to the convergence analysis of our proposed
algorithm.

4 Analysis of Diffusion-Generated Motion

In this section, we present formal analyses which show that the diffusion gen-
erated motion algorithm for filaments does produce a time discrete approx-
imation to motion by vector mean curvature. We hope these non-rigorous
arguments will encourage the development of rigorous convergence proofs,
as they did in the case of diffusion generated motion by mean curvature for
surfaces.
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Figure 3: (a) In our examples, a plane and a reference axis are defined for each
point on the filament. The initialization for a particular plane is then given
by x(P) = exp(i6(P)) where 0(P) is an angle function that winds around
the filament. (b) Whenever the curve can be represented as a function of z
in some coordinate system, this initialization step is particularly straightfor-
ward. For each grid point P = (P, P, P3) we restrict ourselves to the plane
z = P3 and set O equal to the intersection of the plane with the curve. A
consistent initialization is then obtained by setting x(P) = exp(i6(P)) where
0(P) is the angle between OP and the fixed vector e; = (1,0,0).
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(c) Initialization as an intersection.

Figure 4: Consider a filament which is the intersection of two surfaces. To
initialize x: (a) Set xge equal to +1 inside the first surface and —1 outside.
(b) Set x7m equal to +i inside the second surface and —i outside. (c) We
initialize xy by summing the contributions from xg. and xr,.. lLe., x =

XRe + XIm-
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We present two alternative approaches: heuristic analysis that uses a
variety of shortcuts to deduce the motion law, and a detailed asymptotic
analysis that yields the motion law.

4.1 Heuristic Analyses

Here we present two short, formal calculations which “show” that diffusion
generates motion by vector mean curvature for a filament. These calculations
allow us to quickly extract the motion law generated by diffusion, without
going through the full details of asymptotic analysis. This is particularly
useful for exploring novel diffusion-generated algorithms.

4.1.1 Swurface Heuristics

We first briefly review each calculation for the easier case of diffusion gener-
ated mean curvature motion of surfaces [16, 17]. (Note that the distributional
argument for surfaces given below has not been presented before.) We then
show how the arguments extend to the more complicated case of filaments.

Consider a surface I', which is the boundary of an open set 2. We repre-
sent I as the “zero level” of the characteristic function of the set,

(7) = 1 if7e
XTI =3 21 otherwise

Our goal is to show that diffusion applied to this characteristic function
will move its zero level with a normal velocity equal to the mean curvature,
initially.

We can formally derive this directly from the diffusion equation

Xt = V2X-

by suitable evaluation of the terms. There are two distinct approaches that
yield simple, informative results. The first relies on writing the Laplacian out
in a special geometric coordinate system. This has the advantage of providing
a great deal of insight into why the method works, but becomes complicated
in higher dimensions. The second approach is based on the formal calculus
of distributions, which makes the calculations simple and mechanical in any
number of dimensions, but is not as intuitively enlightening.
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Geometric Coordinates for Laplacian The approach that is most di-
rect and also provides the most insight is to write out the Laplacian in a
coordinate system adapted to the local geometry of the surface, I'. This is
especially easy in the plane, i.e. for a 1-D curve I’ moving in R?. In that
case, suppose we want to determine the velocity vn(ﬁ) at a particular point
PeTl. To analyze the motion set up an (r, ) polar coordinate system with
origin at the center of the local circle of curvature of P. Note that in this
coordinate system, Pislocated at r = R, the radius of curvature at P. Using
the standard polar coordinate form of V2 the diffusion equation becomes

1 1
Xt = —Xr T Xor + _QXGG'
T T

Because the polar coordinate circles are aligned (tangent to second order)
with the level contours of y initially, we have x4y = 0 and (for short times) the
equation becomes the purely one dimensional advection-diffusion equation

1
Xt — —Xr = Xrr
T

This evolution causes the initial radial step-function profile x(r) to advect
radially with the spatially variable speed v = —1/r, and simultaneously
diffuse symmetrically into a hyperbolic tangent profile. Evaluating this at
the point of interest P where initially x = 0 and 1/r = & is the curvature
of I', we get that initially the zero level of y will move normal to itself at
speed v, = —k, which is motion by mean curvature with the proper sign
for a stable, well-posed motion. Note that the radial diffusion term does not
effect the motion of the zero level initially, due to the symmetry of the step
function x(r) about its zero.

Note that this analysis shows that diffusion always induces an initial mean
curvature motion in the contours of the diffusing function, as well as other
effects that redistribute the function values. The special symmetry of the
characteristic function causes all these other terms to vanish at its zero level.
Thus diffusion generated motion relies on the generic short time behavior of
diffusion and the special symmetry of the initial data to achieve its effect.

Distributional Calculus Expressing the Laplacian in geometric coordi-
nates provides a great deal of insight, but it becomes complicated in higher
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dimensions and also requires a certain amount of pre-existing intuition to
interpret the resulting formulas. There is an alternative approach that yields
the result for a (codimension one) surface in any number of dimensions using
only formal calculus. In this approach, we evaluate the terms of the diffu-
sion equation as idealized distributional derivatives, since this captures the
dominant singular behavior of the solution. To do this completely formally,
we assume that y is at all times the characteristic function of a set whose
boundary I'(t) is moving with a normal velocity v,. Le. assume x = H(d),
where H(z) = x/|z| is the sign function, and d(Z) is the signed distance
to the moving interface I'(t), with sign such that d > 0 inside the set. To
facilitate the calculations, we note the following relations. As distributions,
H' =20, and §(d) is a delta function concentrated on the interface I'(t). The
unit normal vector field to I'(¢) is given by n = —Vd, the mean curvature
is given by k = V - 7, and the normal velocity is v,, = d;. Further, these
definitions naturally extend these quantities defined on I'(¢) to all of space,
where they are in general the normal, mean curvature and normal velocity
of the level contours of d. We can now readily compute the distributional
derivatives
Xt = 20,0,

Vx = —20n,

and
V- Vyx = -2k + 26"

Using these formulas, the diffusion equation becomes the relation

20,0 = —2K0 + 20'.

If we evaluate this relationship at the interface of interest, I', where d = 0,
equating the coefficients of the delta functions gives

Uy = —K

which is precisely motion by mean curvature of the surface (with the proper
sign for stable, well-posed motion). Note that we are justified in neglecting
the 0’ term at d = 0 because §'(0) = 0, while §(0) = oo, formally.
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4.1.2 Filament Heuristics

In the case of filament motion, we have the curve initially represented by a
complex valued function of the form

where 0(Z) is a real angular coordinate on R? that increases by 27rm around
any loop about the filament, where m is the nonzero integer winding number
of x. We identify the filament as the place where y “vanishes”, which in
general means the locus of points in R? that y winds around. Compare this
to the case for surfaces above, where the “zero level” of the discontinuous
characteristic function clearly meant the points in space at where the sign of
X changes.

Following the analysis for surfaces, we will deduce the effect that diffusion
has on the location of the zero of x by direct, formal evaluation of the diffusion
equation

Xt = V2X-
In order to provide a clear intuition, we assume that y winds around the
filament uniformly? . Specifically, we assume that = m¢(Z,t) where ¢(Z, 1)
denotes the polar angle between ¥ and the Frenet normal to the filament, in
the plane normal to the filament that contains . Detailed asymptotics for
initializations based on parallel planes (see Figure 3b) are given in Section 4.2.

Laplacian Heuristic Since we only need to track the motion of the zero
of the complex y, we can simplify the analysis slightly by working only with
the amplitude of y and ignoring the phase. Thus we write

X(F,1) = A(#, )"

where A = |x|, and plug this form into the diffusion equation. The real part
of this equation yields the amplitude evolution equation

A; = V2A — |VO2A.

2Heuristically, this assumption is reasonable since each diffusion step helps to enforce
this type of symmetry near the zero of x.
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When viewed in this decomposition, we see there is a reaction term present
that instantaneously drives the amplitude A to 0 at the location of the sin-
gularity of |V@|, which in turn occurs at the center of winding of 6, i.e. at
the filament location. (Note that the presumed winding of ¢ implies that
V0| blows up at the filament like m/d, where d is the distance to the fil-
ament.) Thus, as expected, the amplitude vanishes at the filament. This
decomposition shows how this is enforced by the winding number.

All that remains is to write out the Laplacian in suitable geometric co-
ordinates, and show that it has a term corresponding to advection with a
velocity that reduces to ¥ = kn at the filament, where & is the curvature and
n is the Frenet normal vector. Suitable coordinates can be defined as follows:
let s be the arclength coordinate along the filament. At a given s value along
the filament, there is a plane normal to the filament, and the Frenet normal n
and binormal b unit vectors in this plane define associated Cartesian planar
coordinates p,q. Thus (s,p,q) define an orthogonal curvilinear coordinate
system (at least, near the filament). In this coordinate system, calculation
(see [12] for partial details) shows that the the Laplacian is given by

V2A = H|H|A]] - — Ay Ay + Ay
where k(s) is the curvature of the filament, and H is the differential operator
1
H[f] = s —
fl=1= Hp(f 7fs)

where 7(s) is the torsion along the filament, and ¢ is the polar angle coordi-
nate in the (p, ¢) plane. Thus the amplitude equation becomes becomes

K
Ay +

1— KpAp = H*A+ App + Agg — ‘VQPA- (2)
Consider the short time effects of the terms of this equation: the singular
reaction term drives A to 0 at the filament, and the (p, ¢) diffusion smoothes
this profile into a cylindrically symmetric well. Because the resulting A is
constant along the filament, and cylindrically symmetric, it has no s or ¢
dependence, and the H terms vanish. Thus, none of these terms actually
produce any initial motion of the A = 0 location. The remaining terms in
the equation, evaluated at the filament where p = 0, reduce to

At‘i‘/iAp:O
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which convects the values of A in the (p,q) plane, in the p direction, with
speed k. Thus these terms move the zero of A—and hence the filament—by
the vector mean curvature, initially. See the analysis related to Eq. (14) in
Section 4.2 for further details on the asymptotic properties of the reaction-
diffusion equation (2).

Distribution Heuristic Here we evaluate the terms in the filament dif-
fusion equation as distributional derivatives. The distributional calculus is
more delicate in the case of filaments, because the delta functions that result
are concentrated only along certain directions. For example, let us compute
the distributional gradient of x. We will do this in the (s, p,q) coordinates
defined in the previous analysis. Note that y has no s dependence, so

XS:O‘

Next, consider the behavior of x along the p axis, which passes through the
filament in the normal direction. Restricted to this line, x is constant with
the value e along the ¢ = 0 ray, and €™ along the ¢ = 7 ray, so its
derivative along this direction is a delta function,

Xp(p, ¢ = 0) = [x]#6(p)

where [x], = ¢?© — %) is the jump in x at p = 0. Similarly, along the ¢
axis, which passes through the filament in the binormal direction, we get

i0(0)

Xq(p = 0,q) = [x]s0(q)

where [x], = (/2 — ¢?¥37/2) - Along lines that do not pass through the
filament, x varies smoothly, which makes a smooth contribution to the p and ¢
derivatives. Thus the complete distributional gradient in (s, p, ¢) coordinates
is given by

Vx = [X]nd(p)(s) + [x]s0(q)b(s) + O(smooth)

where O(smooth) is the “smooth” (i.e. non-delta function, or non-singularly
supported) part of the gradient. If we now take the divergence of this, and
use that V - n(s) = —k, V- b(s) = 0 at the filament (see [12]), we get

VX = [XIn6'(p) — £[x]nd(p) + O(smooth)
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Similarly, if we consider the initial time behavior of y along the p axis, it is
simply a step function propagating along at a speed v,,, so we get

Xt(p, ¢ = 0) = —vu[x]nd(p),

while off this axis it varies smoothly in time, hence in general
Xt = —Un[X]nd(p) + O(smooth).

Thus the diffusion equation y; = V?y becomes

~Un[X]nd(p) = [X]nd'(p) — K[x]nd(p) + O(smooth).

As for the case of surfaces, we equate the coefficients of the delta function
terms to obtain
Up = K,

which is the desired motion by mean curvature.

4.2 Asymptotic Analysis of Diffusion Generated Mo-
tion

We next present a detailed matched asymptotic analysis of the ALGORITHM
CDGM and show that the algorithm indeed captures the motion by cur-
vature along filament normal direction. As a byproduct, we also obtain the
order of convergence. We find both outer solution away from the filament
core and inner solution taking account of the core structure before finally
matching the two asymptotics. The inner solution reveals how the zero am-
plitude is generated without the Ginzburg-Landau nonlinearity, a conspired
effort of linear diffusion and imposed topological winding number. The zero
amplitude is what the numerical algorithm captures to follow the evolution
of the filament. We also compare the behavior of the filament core in the
algorithm with that of the complex Ginzburg-Landau equation (1). During
the diffusive step, the filament core size enlarges in time like O(v/At), while
the Ginzburg-Landau filament core size remains O(e) for all time.

Let us consider the diffusion effect on a complex scalar function of the
form xo = exp{i©y}, where ©g is the phase function (counting the angle)
about a space curve (the filament) I'y. Initially, O is as described in Section
3.2, see also Fig. 3(b). Let us examine the effect of short time diffusion on
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Xo, especially its phase. Suppose the filament is parameterized by z, that is

—

Co: (71(2),72(2), 2), then (Z = (z,y,2), £ = (£,1,0)):

X(t,7) = (4mt) =3/ /R exp{—[§ — 7?/4t} exp {z arctan (%) } d€.

Changing variables: E =T+ 7'57 , and 7 = /t, we have (ignoring the primes):

i e Loyt = (O]
x(t, ¥) = (4m)~? 2/R3e p{—|¢]?/4} e p{zarctan <x—|—7’§—71(z+g7') dg.

If |z —v,(2)| > 7€, for € € (0,1/4), we can expand the arctan function in
small 7. Some details are:

y+mn =7z +0m) _ y=mn(a) (n=7()0 g —1a(2) - 7(2)C 2
e - e (T g T e

= FRy+7F +0(); (4)
and:

F;
exp{iarctan(Fy + 7, +O(7?))} = exp {Z (arctan Fy + ﬁ + 0(7'2)) }
0

, R
= exp{iarctan Fy} <1 + T 72 + 0(72)(})

Note that Fj is independent of é’ and F} is linear in é’, so when integrated
against the heat kernel (now unit Gaussian) in (3), the O(7) term vanishes,
and we have:

X = x(t, Z)/|x(t, T)| = exp{i(arctan Fy + O(t))}, (6)

for small ¢ and |z —7,(2)| > t€/2, € € (0,1/4). The O(72) = O(t) term in (4)
is quadratic in E and is not zero in general when integrated against the unit
Gaussian, hence (6) is in fact optimal. It says that the small time diffusion
on the phase is to introduce an O(t) correction away from the filament.

We just derived this from a special coordinate system parameterized by
z, however, the conclusion is independent of the choice of the coordinates. In
fact, we will be mainly concerned with # in the vicinity or O(t¢/?) distance
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from the filament, so a local Frenet coordinate is more convenient. For small
t, the form of the phase function away from the O(t¢/2) neighborhood of the
filament is a higher order term, as seen from the fast decay of heat kernel.
Hence local Frenet coordinate gives the same leading order behavior.

Now we look at x(t, Z) using Frenet coordinate attached on the filament
and develop the inner asymptotic expression. Let us adopt the framework in
5] and define I' : X (s,t) = (X,Y, Z)(s,t), where s is the arclength of I'y at
t = 0. A space vector ¥ = X+ r7, where 7 = 7(6, s,t), and 7 the radial unit
vector on the Frenet plane spanned by (7, l;), the normal and binormal unit
vectors. Let ¢ =7 -7, and 6y = 6y(s,t) obey: 0y, = —oT', where 0 = ])Z's\,
and T = —o~ b, - being the torsion of the filament. Let 6 = ¢ — 6y, then
(r,0,s) form orthogonal curvilinear coordinates, and:

d7 = #dr + r0df + hy?ds,

where 7 the tangential unit vector, hz = o1 —rr cos(0+0y)], and k = o~ |7]
the filament curvature.
The heat equation in the (r, 0, s) coordinates is:

0 r,. .0 N,
la—X vrgs hg(rt‘T)%—(Tt'e)%]X

o 9. 9, _,0. 0 1a>1 0

= (rha)™ la rhage) ¥ ae(h?’r a0 " 25" 5

where: V,p = 8072 r—! d 9 + h3 5.7 The right hand side of (7) is equal

to:

[32 L0 Kcosp O L, 02 ksing ;0 =2 0 0% h3s O

ﬁ+r 5_1—m‘cos<p5+r 062 1—/£rcos<p 30+ 5 92 hy Os

We look at a point z of O(0) away from I', and expand y as:
X ~ Ae”® = (Ag+ 6A, +--)(n,T,5,0, t)ei(sﬁ(ssl+"')(”’T’S’9’t), (8)

where n = r/§, 7 = t/6%, and the size of the small parameter § will be
determined later. The heat equation in (1,7, s, ) is
3} - 0 ~ 0

72_ o A o -1/~ . A\ 7 A
J 5 X -V, 54— 0nhs (7 T)as Ts - 080
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0? 0 kcosp O
g2 9 19y o
= (8772—“7 677) 0 1 — 0nk cos p dn
0? K sin @ 0 h
-2 -2 Y -1 -1 -2 Y 183s
o 00? 0 1 — dnk cos 4,07] %+ s 0s?  hs %) )

Plugging (8) into (9) and keeping leading orders O(§2) and O(6~ '), we find:
072(Ar +1iS,A) — 671X -V, 9A = 2 AA+2iVA-VS — |VS]?A 4 iAAS]

+ 07~k -VA+iArn - VS| (10)
Collecting imaginary and real parts, we have:
A .
ST—AS—FQVT-VS+6(/<aﬁ—X)-VS:O(62), (11)
A, — AA+ (ki — X) - VA4 |VS]PA = O(6?), (12)

with initial data for A being 1, and for S the angle variable 6. Here we
suppose that the initialization can be expressed as local Frenet coordinates
near the filament and that its phase is equal to 6. Otherwise, there is an
initial layer during which the phase adjusts itself to #. Notice that a small
interval of ¢ is magnified by 62 for 7, and so other phase initialization may
well have relaxed to #. The topological constraint on S is that its winding
number about the origin is 1, also VS tends to zero at p infinity which helps
to ensure the limit of A equal to one at p infinity. In (11)-(12), the coupling
term is VTf‘ - VS. To leading order, we have:

A
SO,T —A80+2V 0 : VSO - O,
Ao
Ao — AAg + |V S|? 4 = 0, (13)

which has solution Ag = Ag(|n|,7) = Ao(p,7), and Sy = 6. The coupling
term is zero, and the reduced Ay equation becomes:

1
P

1
AO,T = AO,pp + ;Ao,p - A07 (14)

with Ag(p,0) = 1. The dynamics of equation (14) is best understood in terms
of its self-similar solution:

Ao(t,p) = A(Z) = A(z),
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satisfying the ODE:

1 1 1
Azz - n Az T
+ (z ) 42

: A=0, (15)

with the boundary conditions: A(z) is regular near z ~ 0, A — 1 as z — +o0.
Expanding A for small z, we find two linearly independent local solutions:

Ay =2 (co+ez+--4), ¢ >0, (16)

and
Ay =z (b +brz+ ) +logz (B + bz +---), by >0,

with the latter removed due to the regularity condition at z = 0.

Hence we see from (16) that the desired solution is strictly increasing in a
small neighborhood of zero. By the maximum principle on positive solutions
of equation (15), such a solution cannot experience an interior maximum,
and so must be nondecreasing towards z — co. Finite time blowup cannot
occur due to boundedness of coefficients for z away from zero.

It remains only to analyze what limit A approaches as z — oo, a positive
finite number or infinity. Making the change of variables:

_1 _
A=c¢ 5 logz z/SB7

we have: 1 1
— 4+ —)B=0.
64 + 8z>

By a result of P. Hartman (p. 382, [9]), we have two linearly independent

Bzz - C](Z)B = Bzz - (

solutions: ;
B~ g /4 exp{i/ Va(s)ds}, z— oo,
where: ”
1 1 1 4 8
20y = [ — 4+ — ~o(1+2 = )
() (64+8s> 8(+s 2 )
and:

1 1\ V4 1 2 10
ey (2L (12 Y )
) (64 - 83) Ve ( st

So the two linearly independent solutions are:

2 10 1 8
Big ~ <1—;+Z—+---> exp{:lzg(z—l—4logz—|—;+---)}.
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Or in terms of A:

2 1 2 1
A o~ (1=Z24... TR Uy R A R R R,
o (= el b= (S )
= (I=1/z4- )=V (I fap+--), (17)
and: 9 1 6
A2 ~ e—logz—z/4(1 —Z4.. ')G% — _6—2/4(]_ 4+ -4 .- )
z z z

Hence up to a multiplicative constant, the asymptotic behavior of A is
that A(z) converges to a finite positive constant as z — co. We have A’(z) >
0, and in fact A’(z) > 0 for any finite z. Letting w = A’(z), we see that w
satisfies the differential inequality:

1 1

1
w.. + (1/2+1/4)w, — (? + @)w ~ 9.3

A <0,

implying via maximum principle that the nonnegative function w cannot
achieve an interior minimum 0, thus w > 0.

We normalize A so that A(4+o0c0) = 1. By maximum principle, such a
solution A (A(0) =0, A’(z) > 0, A(+00) = 1) is the unique classical solution.
This normalized self-similar solution is selected with initial condition 1 for
equation (14).

With the order O(d) terms turned on, the system (11)-(12) is coupled,
however, the coupling tends to zero as p — oo since VA — 0 and A — 1.
For 7 € [0, 7], 70 a fixed positive number, as p — oo, the S approaches its
steady state in 7 denoted by S, obeying the equation:

—AS. + 0(ki— X) - VSs = O(82), (18)

subject to the constraint that its winding number is one and also V.S, = o(1)
as p — co. Solution of (18) to O(J) is:

0 .
Seo = 77/0 [—G, + d(kn — X) - (cos0,sin 0)G] db, (19)

where:

G = —exp{d(kn — X) - (ncos,nsin )} Ko(on|xn — X|/2), (20)
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with Ko(z) = —log§ — const. + ---, K, the zeroth order modified Bessel
function, see [19].
Combining (19)-(20), we calculate:

Seo = 9+5(/ﬁﬁ—):()(nsin0,77(1—cosﬁ))Ko((Sn]/@ﬁ—X\/Q),
= O+ r(kn— X)(sinb, (1 —cos))Ko(|xn — X|r/2). (21)

Now we select § to be fixed small number > O(t/2). Consequently, r = O(9);
the phase corrections due to the above two calculations (6) and (21) match
to give the relation:

|k — X| Ko(|rn — X|/2) = O(t), (22)

implying:

. . t
X —kn=0 (log(t—1)> , (23)
for small £. We have shown that after the first diffusing step of the algorithm,
the filament motion is motion along normal direction by curvature to the
leading order.

At the subsequent normalizing step, Y = €¢©, with © = 6 + O(6t), ot
the time step of the algorithm, locally in the Frenet coordinate near the fila-
ment I". This follows from the inner solution structure as shown in (21). As
commented before, a similar outer solution calculation again infers that the
phase correction at the following diffusing step is O(6t) to leading order. It-
erating this argument, we see that the ALGORITHM CDGM of Section 3.2
captures the leading filament motion law of the Ginzburg-Landau equation,
that is motion by curvature along the normal [19].

4.3 Comparison with Ginzburg-Landau Filaments

The algorithm in Section 3.2 mimics the action of the complex Ginzburg-
Landau (CGL) nonlinearity (which is stiff numerically) by repeated normal-
izing steps (2a). The diffusing steps (2b) recovers the quantity si — X;
however, the inner solution, especially the amplitude, is time dependent; and
the core size increases in time. In contrast, the inner solution of the CGL

is quasi-steady (only depending on r/¢), and the filament core size remains
O(e) all the time.
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The diffusive aspect of the algorithm and that of the CGL do share some
common features. The CGL phase obeys linear diffusion equation away from
the filament core region ([19], [14]), which makes the phase change by O()
for small time, similar to the algorithm.

The phase singularity (zero amplitude) in the algorithm is generated by
the imposed phase winding number and the linear diffusion. In CGL, the
stiff nonlinearity is a major source of zero amplitude. It remains to find out
how to extend the approach to model a phase singularity in the Schroedinger
filaments (motion by curvature along binormal). A straightforward use of
the linear equation iu; = Awu only produces oscillation near the core region.

5 Numerical Experiments

In this section, we report on various experiments using our algorithm. For
simplicity, all results are derived using a pseudospectral spatial discretiza-
tion (see, e.g., [24]). More accurate results may be obtained using adaptive
resolution with fast Fourier transform techniques. See [22] for a detailed
discussion on these methods for the ALGORITHM DGM.

5.1 A Ring

To begin, consider the curvature motion of the circular ring displayed in
Fig. 5.

Since a circle may be represented as the intersection of a plane with a
cylinder, it is clear that we may initialize y according to the shape-based
method described in Section 3.3. Specifically, we set xg. equal to +1 inside
and —1 outside the cylinder and Yyj, equal to +i below and —¢ above the
plane. This gives the initial value of y as a sum x = Ygre + X1 as shown
in Fig. 6a. Using this initialization, with a time step size of At = 0.0001
and a mesh spacing of Az = 1/128 we obtain a close agreement with exact
solution for curvature motion. Indeed, the relative error in the change of area
enclosed by the ring is always less than 4% in this calculation. See Fig. 6b.

An alternative initialization appropriate for generalization to interlinked
rings is also easily derived (see Fig. 7a): For each grid point P in the domain,
the nearest point O to the ring is determined. The initial value of y is then
given by exp(if(P)) where 6(P) is the angle between OP and the outward



5 NUMERICAL EXPERIMENTS 30

09r
081

0.8 0.7

06 06t
N
0.4 05
04f
0.2

031

0.2r

oa 06 01f

(a) Ring in 3D. (b) The cross section z = 0.5.

Figure 5: (a) Initial ring. (b) Cross sectional contour plot of the ring shrink-
ing under curvature motion at various times t. Note that the exact solution
for this problem is easily obtained using the fact that the radius of the circle
obeys the ordinary differential equation, 7 = —27/r.

normal at O. Once again, a close agreement with the exact solution for
curvature motion is obtained. For example, the relative error in the change
of area enclosed by the ring is always less than 4% when At = 0.0001 and
Ax =1/128. See Fig. 7b.

5.2 A Spiral

For our second example, consider the curvature motion of a periodic spiral,

r = 0.5+ 0.3cos(2ms),
= 0.5+ 0.3sin(27s),

zZ = S.

Here, it is easily shown that the exact solution is also a spiral, but with
a radius that shrinks according to the ordinary differential equation, 7 =
—r/(r* + o2)-

Since this spiral is naturally represented as a function of z, it is straight-
forward to initialize x according to the method described in Fig. 3b. Using
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(a) Initialization. (b) Numerical result.

Figure 6: (a) Because a circle can be represented as the intersection of a
cylinder with a plane, it is straightforward to initialize a ring: Simply set
Xre equal to 41 inside and —1 outside the cylinder and x,, equal to +i
below and —¢ above the plane. The initial value of x is then given by a sum:
X = XRe + Xim- In our simulation, a cylinder with a radius of 0.35 was used
to produce a ring with the desired initial radius. (b) Numerical result at

various times t using a time step size of At = 0.0001 and a mesh spacing of
Az =1/128.
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(a) Initialization. (b) Numerical result.

Figure 7: (a) Initialization of y for a ring. For each grid point P, the nearest
point O to the ring is determined. A consistent initialization is then obtained
by setting y(P) = exp(if#(P)) where §(P) is the angle between OP and the
outward normal at O. (b) Numerical result at various times ¢ using a time
step size of At = 0.0001 and a mesh spacing of Az = 1/128.
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(a) Exact solution. (b) Numerical result.

Figure 8: A periodic spiral (initial radius of 0.3) evolved with a normal
velocity equal to curvature: (a) Exact solution. Note that the exact solution
for this problem is easily obtained using the fact that the radius of the spiral
obeys the ordinary differential equation, © = —r/(r? + 12). (b) Numerical
result derived using the ALGORITHM CDGM.

this initialization, the location of the spiral filament was approximated over a
time ¢ = 0.05 using a time step size of At = 0.000025 and a mesh spacing of

Az = 1/128. As in the case of a shrinking ring, the ALGORITHM CDGM
gives a very close agreement with the exact solution. See Fig. 8.

5.3 Connected Rings

For our next example, consider the curvature motion of two interlinked rings.
Here, the rings shrink and eventually merge to form a closed loop, as shown in
Fig. 10. In this example, we take our “exact solution” to be a front tracking
calculation with 200 nodes along the curve. The change of topology was
chosen to agree with the optimal curve shortening solution and was verified
with a simulation of the complex Ginzburg-Landau equation.

To initialize x, we determine the nearest ring and assign a phase angle
exactly as in the case of a single ring. This phase angle is then shifted by
an amount « according to the relative position of the distal ring. See Fig. 9.
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Figure 9: Initialization of y for connected rings. Similar to the case of a
single ring, the nearest point O to the closest filament is determined for each
grid point P. The value of §(P) is then given by the angle between OP and
the outward normal at O (denoted o). Letting Q be the nearest point on
the distal ring and g be the outward normal at Q, a consistent initialization
is obtained by setting x(P) = exp(i6(P) + ia(P)) where a(P) is the angle
between np and ng.

Using this initialization, the location of the filament was approximated over
a time t = 0.02 using a time step size of At = 0.00002 and a mesh spacing
of Ax = 1/256. As shown in Fig. 8 the ALGORITHM CDGM gives a
very good agreement with the exact solution. Notice, in particular, that the
method automatically selects the correct topological change and that (unlike
level set formulations) the filaments do not develop interiors.

5.4 A Large System

In our final example, we simulate a large system of randomly generated
filaments.

To initialize the system, a random phase angle 6 € [0, 27) was assigned to
blocks of size 0.2 x 0.2 x 0.2. Using this initialization (i.e., with xy = exp(if)),
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t =0.016 t =0.020

Figure 10: Two connected rings moving by curvature motion (exact solution).
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Figure 11: The diffusion-generated motion of two (initially) connected rings.
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the motion of the filaments was approximated over a time ¢ = 0.02 using a
time step size of At = 0.0001 and a mesh spacing of Ax = 1/128. As shown
in Fig. 12, the ALGORITHM CDGM produces a smoothing and shortening
of filaments as time progresses. Note also that topological shape changes are
automatically captured and that the filaments do not develop interiors.

6 Generalizations and Variations

Here we discuss possible generalizations, variations and alternative formu-
lations for diffusion generated motion of filaments. Of particular interest is
generalizing it to obtain “motion by vector mean curvature” for objects of
any dimension and codimension.

For clarity, let us briefly recall the meaning of vector mean curvature. For
a k dimensional object I' inside of R?, the mean curvature has an obvious
meaning as a scalar—i.e. at any point on the object it is the sum of the
principal curvatures. However, it also has a natural direction associated
with it. To describe this in concrete terms, recall that passing through any
point p € I" are geodesic curves g;,7 = 1,..., k, such that

where s denotes arc length, and x;,¢2 = 1, ...,k are the principle curvatures
at p. Here n; lie in the d — k dimensional normal space to I' at p. The
vector mean curvature xkn is simply the the sum of these principle curvatures
vectors,

i=k
KN = Z /izﬁz
1=1

Alternatively, we can directly interpret “motion by mean curvature” for
I’ to be the motion produced by gradient descent minimization of its (k-
dimensional) “surface area”. The resulting normal velocity field induced on
I' by this flow is the vector mean curvature, by definition. Thus the vector
mean curvature is simply the variational derivative of the surface area of I'
(with respect to I').

Diffusion Generated Motion for Codimension 2 Filaments The dif-
fusion generated motion algorithm for filaments in R3 has an immediate ex-
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t=0.015

Figure 12: The diffusion-generated motion of a system of filaments. Here,
zero flux boundary conditions are assumed.
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tension to moving objects of dimension d — 2 inside of R?, i.e. arbitrary codi-
mension 2 “filaments”. The evolution ALGORITHM CDGM remains un-
changed, and the initialization procedures described in Section 3.3 also have
direct extensions to this setting. The only difference is that now y : R4 — R?
for some d > 3, and the linear diffusion step is carried out on R%.

We conjecture that this extension of diffusion generated motion produces
motion by vector mean curvature of codimension 2 filaments in any num-
ber of dimensions. Formal analysis similar to those presented in Section 4
should be possible, by suitably extending the usual Frenet coordinate system
to the general codimension 2 case. Heuristic support for this conjecture is
also contained in the work of Lin [14], which shows that the singular strong
reaction limit of the complex Ginzburg-Landau reaction diffusion equations
on R? produce codimension 2 filamentary structures moving by vector mean
curvature.

Diffusion Generated Motion for Arbitrary Codimension Filaments
The diffusion generated motion algorithm for filaments in R3 further has a
natural extension to moving objects of arbitrary dimension k inside of R?, i.e.
arbitrary codimension d —k. We simply take xy = (x1,. .., Xa_x) to be a d—k-
vector valued function on R? that represent a k dimensional “filament” I' as
its “center of winding”. More specifically, this means that for any d — k& — 1
dimensional sphere S that loops around I' in R?, the restricted mapping
X : S — RU®) has nonzero degree m about the origin in R“*). The
evolution ALGORITHM CDGM remains formally unchanged, consisting
in general of linear diffusion on RY, followed by renormalization of y to a
unit vector. The initialization methods discussed in Section 3.3 can also be
generalized to this setting. For example, the shape based method described
there extends quite directly: if we have I' represented as the intersection of
the zero level surfaces of d— k smooth functions ¢; : R = R,i=1,...,d—k,
then the mapping

X = (H(¢1),.. ., H(¢a—r)),

where H(x) = z/|z| is the sign function, suitably “winds around” I' with
degree 1.

Note that this general form of the filament algorithm also reduces to the
original diffusion generated motion algorithm [16] in the case of codimension
1. Thus it constitutes a generalization of the original algorithm to arbitrary
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codimension, as we desired. It is interesting to see that the familiar represen-
tation of a surface as a y = 0 level set used there is actually the trivial case
of using the topological degree of a vector field. This provides insight into
how to extend level set methods to objects of arbitrary codimension, which
we will follow up in subsequent work.

We conjecture that this generalized diffusion generated motion algorithm
produces motion by vector mean curvature for objects of arbitrary codimen-
sion. It seems that the formal analyses presented in Section 4 could be
generalized in the direction required to study this motion, although we have
not done so. The key ingredient for this would be writing the Laplace op-
erator in coordinates suitably adapted to the local geometry of I', so as to
bring out its explicit dependence on the vector mean curvature. Nor have we
carried out numerical investigations of this conjecture, due to the high cost
of doing even the simplest new case (which requires diffusion of a 2-vector
field on R* to move a 2-D surface in R*).

We are not aware of any analogous result (rigorous or formal) for the
Ginzburg-Landau equation, although it seems like a natural conjecture based
on what has been shown for the codimension 1 and 2 cases [4, 14]. Specifically,
we would expect that the Ginzburg-Landau evolution equation applied to a
d — k-vector valued field on R that winds around a k& dimensional filament
I' to capture vector motion by mean curvature of I' in the strong reaction
limit.

A Geometric Filament Representation In the approach presented here,
we applied diffusion to an implicit topological representation of the filament.
Specifically, we used a 2-vector valued field whose center of winding in R?
was the image of the filament. Note that such 2-vector x values are not vec-
tors in R3, and so they have no natural geometric relation to the filament,
such as “pointing away from it”. In contrast, we could represent the filament
by a field of 3-vectors in R? that point radially away from it. The model
for such a radial vector field is the unit vector field n = —Vd, where d(Z%)
is the distance from 7 to the filament. The diffusion and re-normalization
processes in ALGORITHM CDGM both apply to such a radial vector field,
and this provides a somewhat different approach to diffusion generated fila-
ment motion, in which we can at all times identify the filament geometrically
as “the set the vector field points away from”. Note this geometric variant of
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diffusion generated motion also makes sense for objects of any codimension,
since the unit vector field pointing away from the object, n = —Vd | is always
defined.

For the initial timestep, our previous heuristic and asymptotic analysis
from Section 4 suggests diffusion of this “radial vector field” will displace
the associated filament in proportion to its vector mean curvature. However,
it is not clear that the renormalization step will produce a new vector field
that points away from the displaced filament in the same radially symmetric
fashion as —Vd, and thus its not clear that the next step of diffusion will
produce further motion by mean curvature. Determining the limiting motion
law (if any) from this geometric approach is an interesting topic for future
research.

Note the geometric approach is no longer directly analogous to the com-
plex Ginzburg-Landau PDE model for filaments, although it does suggest an
analogous formulation in that setting. Specifically, if the Ginzburg-Landau
evolution equation were applied to a 3-vector field on R? that pointed radi-
ally away from a filament, presumably the strong reaction asymptotic limit
would be a unit vector field pointing radially away from that filament moving
by vector mean curvature. We are not aware of any numerical or theoretical
studies of this possibility, however.

There is another PDE analog in the work of Ambrosio and Soner [1]. They
present an approach to mean curvature motion based on a level set evolution
equation applied to the squared distance to the object (of any codimension),
d(Z)?. As a part of their investigation, they show that “near the object”

i, = Vi

where 77 = —Vd?/2 = dn. Thus they show that mean curvature motion of
the object corresponds to a diffusion of this geometric radial vector field.
This suggests (but by no means proves) that if we apply diffusion to the unit
vector field pointing away from an object, n, we might also move the object
so defined by vector mean curvature.

Other Velocity Laws The original diffusion generated motion by mean
curvature of algorithm can be generalized to obtain to obtain a great variety
of other motion laws [16, 10, 23, 20, 11]. The basic idea behind these general-
izations is that diffusive evolution is just convolution with a Gaussian kernel,
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so we could instead carry out linear convolution with some other kernel to
generate the basic motion. In addition, instead of locating the updated ob-
ject as the set where y = 0, we could locate it as the set where y = A, for
some given A in the range of y. This same approach can be applied to the
filament formulation. Specifically, we can define the Convolution Generated
Motion of a filament as follows: let K be a convolution kernel, K : R® — R,
and let A be a complex number, of norm |A| < 1. Starting from a normalized
x : R® — R? representing a filament as its center of winding, we update by
convolution

X&) = Kxx(@) = [ K(E = px()dy
followed by renormalization about the value A,
_ X
XA

which represents the updated filament as its center of winding.

For the case of surface motion, this general approach has been used to
generate constant normal motion, v, = 1, constant plus curvature motion,
v, = a+ bk, anisotropic versions of this, v, = a(n)+b(n)k, and even nonlocal
motion laws such as volume preserving motion by mean curvature. It has also
been used to generate pattern formation and dynamics that has traditionally
been described by reaction-diffusion or cellular automata models [24].

We expect that similarly general motions can be achieved for filaments.
In particular, for a filament the local velocity will have both normal and
binormal components,

X

U =v,n + vbl;,
and it would be quite interesting to know what family of such motions can be

obtained with a particular kernel K and a fixed normalization threshold A,
similar to the rigorous characterization presented in [11] for surface motion.

7 Summary and Topics for Future Research

In this work, we have presented a diffusion-generated approach for the cur-
vature motion of filaments that automatically captures topological mergers
with no special algorithmic procedures. We have also provided formal argu-
ments for the convergence for our proposed method and validated our results
with numerical experiments that include topological change.
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A variety of interesting computational aspects related to our algorithm
are still unexplored. Note, in particular, that we utilized a pseudospectral
spatial discretization for the numerical experiments presented in Section 5.
Although simple, this approach is inefficient because it does not provide for
subgrid resolution or local refinement. For the codimension-one case, how-
ever, efficient discretizations based on adaptive resolution with fast Fourier
transforms have been developed [22]. We expect that these same methods
can be applied to surfaces in arbitrary codimension by replacing the exact in-
tegration used in [22] with appropriate quadrature steps. These fast methods
are the subject of ongoing research.

We presented heuristic and formal derivations of the diffusion generated
motion law for filaments in Section 4. A rigorous proof of convergence—
both for the special case of a filament in R?® and for the case of filaments
of arbitrary codimension described in Section 6—would be of great inter-
est. Further, numerical experiments suggest that in the presence of filament
mergers, diffusion generated motion gives the “optimal curve shortening”
filament evolution. A proof of this observation is desirable as well.

We also outlined the generalizations to arbitrary convolution generated
filament motion in Section 6. It would be interesting to give specific realiza-
tions (convolution kernel K and normalization threshold \) for filament mo-
tions of interest, such as constant normal motion, constant binormal motion,
motion by the vector torsion, length preserving motion by mean curvature,
etc.. It would also be quite interesting to classify what filament velocity laws
are attainable with a fixed kernel and threshold.

Finally, we noted that the method of alternately diffusing and normalizing
can be motivated by a formal operator splitting of the Ginzburg-Landau
equations. Yet phase-field models cannot always be reduced in this way—
i.e. the associated diffusion generated motion does not always produce a
convergent discrete time approximation to the e — 0 singular limit of the
PDEs. For example, we found that the filament motion derived using a
complex diffusion coefficient in the ALGORITHM CDGM does not agree
with the solution to the corresponding Ginzburg-Landau equation (which is
a nonlinear Schroedinger equation). A particularly interesting and important
meta-problem is to determine in general when a phase field model has the
same singular limiting behavior as its diffusion generated motion analog.
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