
Optimal Strong-Stability-Preserving Time-Stepping
Schemes with Fast Downwind Spatial Discretizations

Sigal Gottlieb∗ and Steven J. Ruuth†

February 28, 2005

Abstract

In the field of strong-stability-preserving time discretizations, a number of re-
searchers have considered using both upwind and downwind approximations for the
same derivative, in order to guarantee that some strong stability condition will be
preserved. The cost of computing both the upwind and downwind operator has al-
ways been assumed to be double that of computing only one of the two. However,
in this paper we show that for the weighted essentially non-oscillatory method it is
often possible to compute both these operators at a cost that is far below twice the
cost of computing only one. This gives rise to the need for optimal strong-stability-
preserving time-stepping schemes which take into account the different possible cost
increments. We construct explicit linear multistep schemes up to order six and explicit
Runge-Kutta schemes up to order four which are optimal over a range of incremental
costs.

Keywords: strong-stability-preserving, total-variation-diminishing, Runge-Kutta methods,
linear multistep methods, time discretization.

1 Introduction

When solving a hyperbolic partial differential equation (PDE) of the form ut = −f(u)x,
the spatial domain is discretized, and the method of lines approximation yields the sys-
tem of ordinary differential equations Ut = L(U) where the components of the vector U(t)
approximate the PDE solution at grid points or surrounding cells, Ui(t) ≈ u(xi, t). The
approximation L(U) of the spatial derivative −f(u)x is obtained by a finite difference, finite
element, or spectral method. This approximation is carefully chosen to satisfy special non-
linear stability properties, so that coupled with the forward Euler time discretization, the
resulting sequence of approximations Un

j satisfies the strong stability property:

||Un+1|| ≤ ||Un + ∆tL(Un)||, (1)

∗Department of Mathematics, UMASS-Dartmouth North Dartmouth, MA (sg@cfm.brown.edu). The
work of this author was supported by NSF grant DMS-0106743

†Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
(sruuth@sfu.ca). The work of this author was partially supported by a grant from NSERC Canada.

1

in a given norm || · ||, under a suitable time-step restriction ∆t ≤ ∆tFE . Strong-stability-
preserving (SSP) time discretizations were developed to extend this strong stability property
to higher order time discretizations. In the field of explicit SSP Runge-Kutta (SSPRK) time
discretizations, a general s-stage, explicit Runge-Kutta method is written in the Shu-Osher
form [10]:

U (0) = Un (2)

U (i) =
i−1
∑

k=0

αikU
(k) + ∆tβik

{

L(U (k)) if βik ≥ 0

L̃(U (k)) otherwise
, i = 1, 2, . . . , s,

Un+1 = U (s),

where all the αik ≥ 0 and αik = 0 only if βik = 0 [11]. L(·) approximates −f(u)x and satisfies
the strong stability property described above, and L̃(·) approximates the same derivative,
but satisfies the strong stability property for the backward-in-time Euler method:

||Un+1|| ≤ ||Un − ∆tL̃(Un)||. (3)

For hyperbolic conservation laws, −L̃(·) can be obtained by discretizing in space ut = f(u)x.
This form is a convex combination of explicit Euler steps, which allows us to prove that

whenever L and L̃ satisfy, for a given norm ||·||, the strong stability properties (1) and (3), the
Runge-Kutta method above will also satisfy the strong stability property ||Un+1|| ≤ ||Un||,
but under the stepsize restriction ∆t ≤ C∆tFE, with C = mini,k

αik

|βik|
.

Similarly, an explicit linear multistep method is written as a convex combination of
explicit Euler steps:

Un+1 =
m
∑

i=1

(

aiU
n+1−i + ∆tbi

{

L(Un+1−i) if bi ≥ 0

L̃(Un+1−i) otherwise

)

and can be shown, therefore, to be SSP under the stepsize restriction ∆t ≤ C∆tFE, with
C = mini

ai

|bi|
.

Clearly, these stepsize restrictions can be prohibitive if C is very small. The efficiency of
the Runge-Kutta or multistep method depends on the size of C – a larger C allows for larger
∆t, and thus fewer steps are needed to reach the desired time. However, the computational
efficiency is not determined by the number of time-steps alone; the amount of computational
effort at each time-step must be taken into account as well. In Section 3, we compare the
computational efficiencies of linear multistep methods. Section 4 treats the corresponding
Runge-Kutta methods. In order to make a fair comparison of the relative efficiencies of these
methods and to derive optimal schemes we define:

Definition 1 The effective CFL coefficient Ceff of an SSP time-stepping method is C
w

where
C is the CFL coefficient of the method, and w is the amount of computational work for one
step of the method measured relative to an evaluation of L(·).

Up to now, the computation of L and L̃ has been considered to be equivalent, and the
computational cost of both L and L̃ has been estimated as double the cost of computing
only L. This work estimate naturally leads to a significant reduction in the effective CFL

2

coefficient of a method which requires both L(U (k)) and L̃(U (k)). We remark that this
assumption on computational cost has been central to recent studies for optimal methods
involving both operators. See, e.g., [2, 9, 7].

In this paper, we demonstrate that the cost of calculating both L and L̃ is not necessarily
double the cost of calculating only L. This is due to the fact that both L and L̃ approximate
the same derivative, and there is a significant amount of symmetry which may be exploited
to reduce the computational cost. In section 2 we demonstrate that the cost of computing
both the upwind and downwind operator can be far less than twice the cost of computing
the upwind operator alone. The example in this section suggests the development of new
optimal methods, which take into account that the computation of L and L̃ can be performed
efficiently. In sections 3 and 4 we present new and optimal linear multistep and Runge-Kutta
methods which take advantage of the small incremental cost of computing both operators.

2 Efficient Computation of the Upwind and Downwind

Operators using WENO

In this section, we demonstrate that once L(U) is computed, the additional cost of computing
L̃(U) is sometimes far less than the base cost of computing L(U). This is hardly a surprising
result: if we consider a flow for which the spatial discretization

L(Uj) =
−f(Uj+1) + f(Uj)

∆x
,

corresponds to upwinding, then the corresponding downwind discretization is

L̃(Uj) =
−f(Uj) + f(Uj−1)

∆x
= L(Uj−1),

which can be obtained at no extra cost. However, we are interested in more sophisticated
and accurate methods, and would like to demonstrate that the cost increment can be made
small in a more general context. Therefore, we consider as an example the popular WENO
method.

For our spatial discretization, we consider a fifth-order weighted essentially non oscillatory
(WENO) approximation because these WENO methods are popular and are frequently used
in combination with SSP time-stepping schemes. We emphasize, however, that the multistep
and Runge-Kutta schemes derived in sections 3 and 4 are also suitable for other spatially
discretized systems. If we compare the relative cost of computing L(U) and L̃(U) to the cost
of computing L(U) alone, we say that the cost of evaluating both operators is 1+ δ function
evaluations, where 0 ≤ δ ≤ 1. We refer to δ as the incremental cost.

In the following, we define the fifth-order WENO algorithm for efficiently computing
both L and L̃. This method uses three 3-point stencils to evaluate the numerical flux at each
spatial point, it then uses the difference of the numerical fluxes at two neighboring points to
evaluate L(U). For simplicity, we shall assume that the spatial domain is [−1, 1].

For the WENO approximation we use an equidistant grid xj = −1 + 2 j

N
, j = 0, ..., N.

The flux is split into two parts f = f+ + f−, where d
dU

f+(U) ≥ 0 and d
dU

f−(U) ≤ 0. With
these preliminaries completed, we proceed to the algorithm

3

Algorithm 1 WENO to compute L(·) and L̃(·):

1. Define the stencils for all grid points j = −1, ..., N

S±
1 (j) = 2f±

j−2 − 7f±
j−1 + 11f±

j S±
2 (j) = −f±

j−1 + 5f±
j + 2f±

j+1

S±
3 (j) = 2f±

j + 5f±
j+1 − f±

j+2 S±
4 (j) = 11f±

j+1 − 7f±
j+2 + 2f±

j+3

2. Set up the information needed for the smoothness measurements for k = −2, ..., N +2:

HS±
1 (k) =

(

f±
k+1 − 2f±

k + f±
k−1

)2
HS±

2 (k) =
(

f±
k+1 − f±

k−1

)2

HS±
3 (k) =

(

f±
k+1 − 4f±

k + 3f±
k−1

)2
HS±

4 (k) =
(

3f±
k+1 − 4f±

k + f±
k−1

)2

3. Calculate the smoothness measurements following Jiang and Shu [4].

For IS+
i (j), j = −1, ..., N + 1 For IS−

i (j), j = −2, ..., N
IS1= c1HS+

1 (j − 1) + c2HS+
4 (j − 1) IS1= c1HS−

1 (j + 2) + c2HS−
3 (j + 2)

IS2= c1HS+
1 (j) + c2HS+

2 (j) IS2= c1HS−
1 (j + 1) + c2HS−

2 (j + 1)
IS3= c1HS+

1 (j + 1) + c2HS+
3 (j + 1) IS3= c1HS−

1 (j) + c2HS−
4 (j)

IS+
i (j)= (ǫ + ISi)

2 i = 1, 2, 3 IS−
i (j)= (ǫ + ISi)

2 i = 1, 2, 3

Where c1 = 13/12, c2 = 1/4 and the parameter ǫ is a small number chosen to prevent
the denominator of f̂±

j below from being zero. We typically use ǫ = 10−13.

4. Construct f±
j for j = −1, ..., N . The positive and negative fluxes are computed by

calculating the weights based on the smoothness measurements as in [4] and finally
taking a weighted average of the stencils. These weights are designed so that in the
smooth regions, the approximation will be fifth order, while near the discontinuity, the
weights approach the ENO weights and thus the approximation will be third order.

For f+
j For f−

j

tti = IS+
i (j) i = 1, 2, 3 tti = IS−

i (j) i = 1, 2, 3
w1 = tt2tt3 w1 = tt2tt3
w2 = 6tt1tt3 w2 = 6tt1tt3
w3 = 3tt1tt2 w3 = 3tt1tt2
t0 = 6(w1 + w2 + w3) t0 = 6(w1 + w2 + w3)

f̂+
j = 1

t0
(w1S

+
1 (j) + w2S

+
2 (j) + w3S

+
3 (j)) f̂−

j = 1
t0

(w1S
−
2 (j) + w2S

−
3 (j) + w3S

−
4 (j))

5. Put together the numerical flux f̂j = f̂+
j + f̂−

j , j = −1, ..., N, and construct

L(Uj) = −
1

∆x

(

f̂j − f̂j−1

)

,

for j = 0, ..., N

6. To construct the downwind flux, consider the downwind problem where g(U) = −f(U),
so that the flux splitting implies that g+ = −f− and g− = −f+. Thus, many of the
necessary quantities were computed already. We proceed for j = −1, ..., N :

4

For g−
j For g+

j

tti = IS+
4−i(j + 1) i = 1, 2, 3 tti = IS−

4−i(j − 1) i = 1, 2, 3
w1 = tt2tt3 w1 = tt2tt3
w2 = 6tt1tt3 w2 = 6tt1tt3
w3 = 3tt1tt2 w3 = 3tt1tt2
t0 = 6(w1 + w2 + w3) t0 = 6(w1 + w2 + w3)
ĝ−

j = − 1
t0

(w3S
+
2 (j) + w2S

+
3 (j) + w1S

+
4 (j)) ĝ+

j = − 1
t0

(w1S
−
1 (j) + w2S

−
2 (j) + w3S

−
3 (j))

7. Put together the numerical flux ĝj = ĝ+
j + ĝ−

j , j = −1, ..., N, and construct

L̃(Uj) = −
1

∆x
(ĝj − ĝj−1) ,

for j = 0, ..., N.

This algorithm takes advantage of the fact that the stencils and the smoothness measure-
ments need only be calculated once for both L and L̃. The WENO method for computing the
upwind operator may also be programmed without predetermining the stencils, and this was
often more efficient in our numerical tests. The relative efficiencies, in terms of CPU time, of
these two programming styles (predetermining the stencils or not) depends on the compiler
and machine used. Often, the CPU time involved in pulling the predefined quantities in and
out of cache outweighs the benefit of fewer computations. To control for this, a comparison
with both the modified algorithm with the L̃(·) portion removed, and the traditional algo-
rithm is performed. The incremental cost δ is calculated for each of the two cases, and the
largest incremental cost is the one used. This computed incremental cost is plotted against
the number of grid points for a number of platforms in Figure 1. It is clear that this estimate
varies widely depending on the compiler and machine used. Although the incremental cost
can be roughly assessed analytically by counting the number of floating point operations,
this is not very revealing due to the difficulties in accurately determining the varying cost of
different arithmetic operations, as well as accounting for the cost of other operations such as
memory access and variable assignment. Thus, we must rely on numerical computations to
give us an accurate idea of the cost measurement. However, since computational efficiency
is machine and compiler dependent, robust determination of the value of δ may be difficult.

3 Optimal Explicit Multistep Schemes

Our discussion on appropriate time-stepping methods starts with the class of explicit SSP
linear multistep schemes. We consider optimal methods for arbitrary starting values (cf.
[11, 2]); an analysis that includes starting procedures is also possible using the ideas in [3].
Throughout this section, we allow for the possibility of upwind and downwind operations,
and assume that the cost of evaluating both operators is 1 + δ general function evaluations
where 0 ≤ δ ≤ 1. Thus, each step of the algorithm will have a cost of 1 + δ general function
evaluations if any downwind operators are present. This contrasts with the recent efforts in
[2, 8] where it is assumed that δ = 1.

5

CFL coefficients for optimal nonnegative coefficient schemes are provided in [5]; see also
[2, 8]. For convenience, these results are provided in Table 1 below. In [2] it was shown that
there are no m-step m-th order SSP multistep methods with all nonnegative β’s, and thus
downwind operators were considered. In [11, 2, 8] optimal multistep SSP methods, including
those with downwind operators, were studied. However, up to this point it was assumed that
δ = 1; the purpose of this work is to extend these earlier results and consider general δ < 1.

For the case of unrestricted coefficients, guaranteed optimal k-step, order-p schemes are
efficiently determined using the deterministic global branch-and-bound software, BARON
[13]. To guarantee optimality in BARON, bounds on all the variables are normally needed.
Fortunately this is straightforward because all the ai are bounded by 1 (because

∑

i ai = 1)
and all the bi are bounded by the inverse of the CFL coefficient. Finding globally optimal
linear multistep schemes and guaranteeing their optimality is surprisingly efficient. For
example, BARON 7.2 finds the optimal seven-step, fifth-order scheme and guarantees its
optimality in less than two seconds on a 1.2 GHz Athlon machine. See [6, 7, 8] for further
details on the global optimization of SSP time-stepping schemes.

Table 1 provides the CFL coefficients for the optimal schemes, as found by BARON.
Some of these results (k ≤ 6, 2 ≤ p ≤ 6 and k ≥ 2, p = 2) were first determined in earlier
studies [11, 2, 8] while the remaining results are new. Downwinding often leads to improved
effective CFL coefficients. For example, even if δ = 1, downwinding leads to smaller effective
CFL coefficients when (k, p) = (2, 2), (3, 3), (4, 4), (5, 4), (5, 5), (6, 5), (7, 5) or if p = 6 and
k = 6, ..., 10. We provide two of these schemes, SSPMS(7,5) and SSPMS(10,6), in Tables 3
and 4 (see [8] for k ≤ 6). On the other hand, downwind operators do not even appear in
the optimal schemes when p = 3 and k ≥ 6, so downwinding is not useful there. In the
remaining cases, the size of the increment, δ, will determine which scheme is more efficient.
See Table 2 for details.

4 Optimal Explicit Runge-Kutta Schemes

We now focus on explicit SSP Runge-Kutta schemes. We allow for the possibility of upwind
(L(U (k))) and downwind (L̃(U (k))) operations at the same level k, and assume that the cost of
evaluating both operators is 1+δ general function evaluations where 0 ≤ δ ≤ 1. Once again,
there has been much work on the derivation of optimal schemes which include downwind
operators, e.g. [2, 9, 7]. These results all assume δ = 1. In this section, we proceed to
examine the case where δ < 1.

4.1 Second-Order Schemes

We begin by considering two-stage, second-order schemes. There are two cases: either β10

and β20 have the same sign or they do not. As proven in [1, 9], the former case leads to
the classical modified Euler method, SSPRK(2,2), which has an effective CFL coefficient of
0.5. In the latter case, BARON guarantees that the optimal scheme is the SSPRK∗(2, 2)
scheme provided in Table 5. This scheme has a CFL coefficient of 1.215 and an effective
CFL coefficient of 1.215/(2 + δ). Thus for δ ≤ 0.43 the optimal scheme is SSPRK∗(2, 2),
otherwise it is SSPRK(2,2).

6

It is known that the SSPRK(3,2) scheme [12] is an optimal second-order method with
three general function evaluations [9]. This scheme has a CFL coefficient of 2. If both
L(·) and L̃(·) arise at (precisely) one level then BARON guarantees that the largest CFL
coefficient (C = 2.19) is attained by the SSPRK∗(3, 2) scheme given in Table 6. Larger
CFL coefficients cannot arise using only three stages. This result is obtained by applying
BARON to the model without any sign restrictions on the β’s. By comparing the effective
CFL coefficients of the two schemes it is easily seen that for δ < 0.28 the optimal scheme is
SSPRK∗(3, 2), otherwise it is SSPRK(3,2).

4.2 Third-Order Schemes

For third-order and three general function evaluations, it is known that the Shu-Osher third-
order method, SSPRK(3,3), is optimal [1, 9]. If both L(·) and L̃(·) arise at one level
then BARON guarantees that the largest CFL coefficient (C = 1.30) is obtained using
the SSPRK∗(3, 3) scheme given in Table 7. If no sign restrictions are applied to the β’s,
then BARON guarantees that the largest CFL coefficient is attained by the SSPRK∗∗(3, 3)
scheme. This scheme has a CFL coefficient of 1.44 and is also provided in Table 7. To obtain
the optimal effective CFL coefficient, we choose SSPRK(3,3) for δ ≥ 0.91, SSPRK∗(3, 3) for
0.35 ≤ δ < 0.91 and SSPRK∗∗(3, 3) for δ < 0.35.

The optimal third-order method with four general function evaluations is the SSPRK(4,3)
method [12]; see [9]. This nonnegative coefficient scheme has a CFL coefficient of 2. Down-
winding yields little additional benefit: allowing both L(·) and L̃(·) at one level leads to a
maximal CFL coefficient of 2.06 while leaving the sign of all the β’s unrestricted leads to a
maximal CFL coefficient of 2.12. Due to their limited usefulness we do not provide either of
these schemes here.

4.3 Fourth-Order Schemes

It is impossible to construct a fourth-order SSPRK scheme with a positive CFL coefficient
using only four general function evaluations [9]. Allowing both upwind and downwind op-
erators at one level leads to the SSPRK∗(4, 4) scheme appearing in Table 8. This scheme
has a CFL coefficient of 0.98. By removing the sign restrictions on the β’s, we can obtain a
guarantee (using BARON) that there are no four-stage methods with larger CFL coefficients.

The optimal scheme over the class of fourth-order methods with five general function
evaluations is the SSPRK(5,4) scheme [12, 7]. This nonnegative coefficient scheme has a
CFL coefficient of 1.51. If both L(·) and L̃(·) appear at one level then extensive numerical
searches suggest that the SSPRK∗(5, 4) scheme given in Table 9 is optimal. This scheme
has a CFL coefficient of 2.03 which corresponds to a larger effective CFL coefficient than
SSPRK(5,4) for any δ ≤ 1. We do not report on any other five-stage schemes, since none
were found with CFL coefficients exceeding 2.1.

7

5 Conclusions

In this work, we demonstrate that the incremental cost of computing both the upwind and
downwind operators can be less than one, thus challenging the assumptions which underlie
the currently known optimal methods. As an example, we show that the popular WENO
method (fifth order in smooth regions, third near discontinuities) can be programmed in a
way which reduces the incremental cost δ. We observe that, in practice, the value of the
incremental cost varies according to the number of points, the compiler and the machine.
This example leads to the re-examination of optimal time-stepping methods which include
downwinding, and we obtain a variety of multistep and Runge-Kutta methods which are
optimal for different ranges of δ. A study the numerical performance of these schemes would
also be interesting, and is left to future work.

References

[1] S. Gottlieb and C.W. Shu, Total variation diminishing Runge-Kutta schemes, Math.
Comp., 67, No. 221, pp. 73-85, 1998.

[2] S. Gottlieb, C.-W. Shu & E. Tadmor, Strong stability preserving high-order time dis-
cretization methods. SIAM Review, 42, pp. 89-112, 2001.

[3] W. Hundsdorfer, S.J. Ruuth and R.J. Spiteri,Monotonicity-preserving linear multistep
methods. SIAM J. Numer. Anal., 41, pp. 605-623, 2003.

[4] G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO Schemes, J. of
Comp. Physics, vol. 126, 1996, pp.202-228.

[5] H.W.J. Lenferink, Contractivity preserving explicit linear multistep methods, Numer.
Math. 55, pp. 213-223, 1989.

[6] C. B. Macdonald, High-order embedded Runge-Kutta pairs for the time evolution of
hyperbolic conservation laws, Master’s thesis, Simon Fraser University, Burnaby, BC,
Canada, 2003.

[7] S.J. Ruuth, Global optimization of explicit strong-stability-preserving Runge-Kutta
schemes, Math. Comp., to appear.

[8] S.J. Ruuth & W. Hundsdorfer, High-order linear multistep methods with general mono-
tonicity and boundedness properties, J. Comput. Phys., to appear.

[9] S. J. Ruuth & R. J. Spiteri, High-order strong-stability-preserving Runge-Kutta methods
with downwind-biased spatial discretizations, SIAM J. Numer. Anal., 42, No. 3, pp. 974-
996, 2004.

[10] C.W. Shu & S. Osher, Efficient implementation of essentially nonoscillatory shock-
capturing schemes, J. Comput. Phys., 77, No. 2, pp. 439-471, 1988.

8

[11] C.W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Com-
put., 9, No. 6, pp. 1073-1084, 1988.

[12] R.J. Spiteri and S.J. Ruuth, A new class of optimal high-order strong-stability-preserving
time-stepping schemes. SIAM J. Numer. Anal., 40, pp. 469–491, (2002).

[13] M. Tawarmalani & N.V. Sahinidis, Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Nonconvex Optimization and Its Applications 65, Kluwer, 2002.

9

Tables

Table 1: CFL coefficients for optimal k-step, pth-order linear multistep schemes. If any
downwind operators are present, the effective CFL coefficient will equal the CFL coefficient
divided by (1 + δ); otherwise the effective CFL coefficient will equal the CFL coefficient.

nonnegative coefficient schemes unrestricted coefficient schemes
p = 2 p = 3 p = 4 p = 5 p = 6 p = 2 p = 3 p = 4 p = 5 p = 6

k = 2 1/2
k = 3 1/2 2/3 0.2865
k = 4 2/3 0.3333 3/4 0.4146 0.1587
k = 5 3/4 0.5000 0.0212 4/5 0.5172 0.2371 0.0865
k = 6 4/5 0.5828 0.1648 5/6 0.5828 0.2832 0.1313 0.0462
k = 7 5/6 0.5828 0.2815 0.0381 6/7 0.5828 0.3595 0.1868 0.0809
k = 8 6/7 0.5828 0.3586 0.1451 7/8 0.5828 0.3945 0.2232 0.1073
k = 9 7/8 0.5828 0.3925 0.2277 8/9 0.5828 0.4243 0.2610 0.1419
k = 10 8/9 0.5828 0.4208 0.2822 0.0520 9/10 0.5828 0.4466 0.2989 0.1749

10

Tables (cont)

Table 2: Selection of the optimal k-step, order-p linear multistep scheme. Table entries of
“1” correspond to cases where the unrestricted coefficient scheme is more efficient (in terms
of effective CFL coefficient). Entries of “0” correspond to cases where downwinding does not
appear in the optimal schemes. In the remaining entries, the nonnegative coefficient scheme
will be more efficient provided the increment δ exceeds the table entry.

p = 2 p = 3 p = 4 p = 5 p = 6
k = 2 1
k = 3 0.3333 1
k = 4 0.1250 0.2439 1
k = 5 0.0667 0.0344 1 1
k = 6 0.0417 0 0.7184 1 1
k = 7 0.0286 0 0.2771 1 1
k = 8 0.0208 0 0.1001 0.5382 1
k = 9 0.0159 0 0.0810 0.1462 1
k = 10 0.0125 0 0.0613 0.0592 1

11

Tables (cont)

Table 3: The nonzero coefficients of the optimal 7-step, 5th-order linear multistep scheme.

SSPMS(7,5) ai bi CFL Coefficient

i = 1 0.437478073273716 2.341383323503706 0.1868460
i = 2 0.177079742280077 -0.947731054044159
i = 4 0.266879475710902 1.428339365991395
i = 6 0.079085404949912 -0.423265209377492
i = 7 0.039477303785393 0.211282590801251

12

Tables (cont)

Table 4: The nonzero coefficients of the optimal 10-step, 6th-order linear multistep scheme.

SSPMS(10,6) ai bi CFL Coefficient

i = 1 0.421496355190108 2.409253340733589 0.1749490
i = 2 0.184871618144855 -1.056717473684455
i = 4 0.261496145095487 1.494699665620621
i = 7 0.030002986393737 -0.171495658990894
i = 9 0.078557623043187 0.449031678275387
i = 10 0.023575272132626 -0.134755146621380

13

Tables (cont)

Table 5: The coefficients of the optimal SSPRK∗(2, 2) scheme.

Name SSPRK∗(2, 2)

αik

1.000000000000000
0.261583187659478 0.738416812340522

βik

0.822875655532364
−0.215250437021539 0.607625218510713

CFL coefficient 1.2152504

14

Tables (cont)

Table 6: The coefficients of the optimal SSPRK∗(3, 2) scheme.

Name SSPRK∗(3, 2)

αik

1.000000000000000
0.000000000000000 1.000000000000000
0.203464834591289 0.000000000000000 0.796535165408711

βik

0.457427107756303
0.000000000000000 0.457427107756303

−0.093070330817223 0.000000000000000 0.364356776939073
CFL coefficient 2.1861407

15

Tables (cont)

Table 7: The coefficients of the optimal SSPRK∗(3, 3) and SSPRK∗∗(3, 3) schemes

Name SSPRK∗(3, 3)

αik

1.000000000000000
0.410802706918667 0.589197293081333
0.123062611901395 0.251481201947289 0.625456186151316

βik

0.767591879243998
−0.315328821802221 0.452263057441777
−0.041647109531262 0.000000000000000 0.480095089312672

CFL coefficient 1.3027756

Name SSPRK∗∗(3, 3)

αik

1.000000000000000
0.352901667695409 0.647098332304591
0.049992508960455 0.183215659743209 0.766791831296336

βik

0.695131544898322
−0.245313081462304 0.449818463436018
−0.034751369987025 −0.127358984606862 0.533021190304435

CFL coefficient 1.4385766

16

Tables (cont)

Table 8: The coefficients of the optimal SSPRK∗(4, 4) scheme.

Name SSPRK∗(4, 4)

αik

1.000000000000000
0.447703597093315 0.552296402906685
0.174381001639320 0.000000000000000 0.825618998360680
0.374455263824577 0.271670479800689 0.081190815217391 0.272683441157343

βik

0.545797148202810
−0.455917323951788 0.562429025981069
−0.177580256517037 0.000000000000000 0.840766093415820

0.107821590754283 0.276654641489540 0.000000000000000 0.161441275936663
CFL coefficient 0.9819842

17

Tables (cont)

Table 9: The coefficients of the numerically optimal SSPRK∗(5, 4) scheme.

Name SSPRK∗(5, 4)

αik

1.000000000000000
0.210186660827794 0.789813339172206
0.331062996240662 0.202036516631465 0.466900487127873
0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
0.097315407775058 0.435703937692290 0.000000000000000 0.000000000000000 0.466980654532652

βik

0.416596471458169
−0.103478898431154 0.388840157514713
−0.162988621767813 0.000000000000000 0.229864007043460

0.000000000000000 0.000000000000000 0.000000000000000 0.492319055945867
−0.047910229684804 0.202097732052527 0.000000000000000 0.000000000000000 0.229903474984498

CFL coefficient 2.0312031

18

Figure Captions

Figure 1: Incremental cost on various platforms. A: 1.5GHz Itanium II; compiled with
ifort -fast under Linux 2.4.21. B: 1.5 GHz G4 Powerbook; compiled with g77 -O5 under
Darwin 7.4.0. C: 2.0 GHz AMD Opteron; compiled with g77 -O5 under Linux 2.4.21. D:

3.06 GHz Pentium 4 Xeon; compiled with g77 -O5 under Linux 2.4.21.

19

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

Number of Grid Points

in
cr

em
en

t
B

C
D

Figure 1:

20

