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Abstract. Strong-stability-preserving Runge-Kutta (SSPRK) methods are a specific type of
time discretization method that have been widely used for the time evolution of hyperbolic partial
differential equations (PDEs). Under a suitable stepsize restriction, these methods share a desirable
nonlinear stability property with the underlying PDE; e.g., stability with respect to total variation,
maximum norm, or other convex functional. This is of particular interest when the solution exhibits
shock-like or other nonsmooth behaviour. Many results are known for SSPRK methods with non-
negative coefficients. However, it has been recently shown that such methods cannot exist with order
greater than four. In this paper, we give a systematic treatment of explicit SSPRK methods with
general (i.e., possibly negative) coefficients up to order five. In particular, we show how to optimally
treat negative coefficients (corresponding to a change in the upwind direction of the spatial discretiza-
tion) in the context of effective CFL coefficient maximization and provide proofs of optimality of
some explicit SSPRK methods of orders 1 to 4. We also give the first known explicit fifth-order
SSPRK schemes and show their effectiveness in practice versus more well-known fifth-order explicit
Runge-Kutta schemes.
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1. Introduction. Solutions to hyperbolic partial differential equations (PDEs)
are commonly approximated by sequentially discretizing the spatial and temporal
derivatives. For example, in the method of lines, a discretization of the spatial deriva-
tives of the PDE is carried out to produce a large set of coupled time-dependent
ordinary differential equations (ODEs). These ODEs can then be treated by suitable
time-stepping techniques such as linear multi-step or Runge-Kutta methods.

In the numerical solution of hyperbolic PDEs, difficulties may arise due to the
presence of shock waves or other discontinuous behaviour. In particular, the numerical
solution to such problems often suffers from spurious oscillations or overshoots. This
usually represents unphysical behaviour, and it is almost always desirable to use a
numerical method that suppresses it. One of the first families of such schemes were
called total variation diminishing (TVD); see [22, 21]. Following more recent work[4],
we refer to them as strong stability preserving (SSP).

In particular, we are interested in the development, analysis, and optimization of
SSP Runge-Kutta (SSPRK) time-stepping methods for the hyperbolic conservation
law

ue + fu)y =0, (1.1)

subject to appropriate initial conditions. When a SSPRK method with nonnegative
coefficients is used it is convenient to consider a semi-discretization of (1.1) in space
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to yield a large coupled set of ODEs
U=FU). (1.2)

More generally, following [22, 21, 3, 4], upwind-biased (F'(U)) and downwind-biased
(F(U)) spatial discretizations may be applied in some combination to achieve favour-
able nonlinear stability properties for a given time-stepping scheme. For simplicity
we refer to upwind-biased and downwind-biased spatial discretizations as upwind and
downwind spatial discretizations respectively.

Optimal explicit SSPRK schemes with nonnegative coefficients and where the
number of stages s is equal to the order p for s = p = 1, 2, and 3 have been known for
some time. Gottlieb and Shu [3] showed that no such method exists with nonnegative
coefficients when s = p = 4. In [25], Spiteri and Ruuth proposed a new class of ex-
plicit SSPRK methods with nonnegative coefficients with s > p. They gave optimal
explicit SSPRK schemes with s stages and orders 1 and 2 (see also [21, 3]), as well
as specific schemes for p =3, s = 4,5 and p = 4, s = 5. The advantage afforded by
these high-stage schemes is that the increase in the CFL coefficient allows for a large
enough increase in the stable time step to more than offset the increase in computa-
tional cost per step. However, in [20] they showed that it was impossible to have an
explicit SSPRK method with order greater than 4 with nonnegative coefficients. In
this paper, we give a unified treatment of all explicit SSPRK schemes with positive
and/or negative coefficients of up to order 5 in terms of the effective CFL coefficient.
We find that many of the optimal explicit SSPRK methods under the constraint of
nonnegative coefficients are also optimal in terms of effective CFL coefficient when
negative coefficients are allowed. We also present the first fifth-order explicit SSPRK
methods.

We remark that explicit fifth-order SSP multistep schemes have been successfully
constructed [21, 13, 4]. The most efficient scheme of this type that explicitly appears
in the literature [21] is
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This six-step scheme involves evaluations of both upwind and downwind operators
and has an effective CFL coefficient of 0.065. In this paper we construct explicit
SSPRK methods with up to a 325% improvement in effective CFL coefficient over
this scheme. Comparable gains are also shown to arise in practice.

We further note that in this paper we deal with explicit Runge-Kutta methods
where the number of stages s can be substantially larger than the order p. These
methods are optimized with respect to effective CFL coefficient, which is a theoretical
measure of the stepsize restriction required for nonlinear stability. Although perhaps
similar at first glance, this is not in general related to maximizing the area of the
(linear) stability region of a Runge-Kutta method; see [3] for a counter-example.
For work on the optimization of the linear stability regions of explicit Runge-Kutta
methods, we refer to [15] and the references therein.

The remainder of the paper is organized as follows. In Section 2 we review
some relevant results on SSP schemes as well as define important concepts such as
effective CFL coefficient. In Sections 3 and 4 we use analytical as well as numerical
techniques to find explicit SSPRK methods up to order five with optimal effective
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CFL coefficients. In Section 5 we show the efficiency of the new optimized fifth-
order explicit SSPRK methods versus the optimal fifth-order multistep method and
a commonly used fifth-order explicit Runge-Kutta method. Finally in Section 6 we
conclude by summarizing the main findings of the paper.

2. Background on SSP Schemes. In this section we give some theoretical
background on SSPRK schemes. We begin by recalling the definition of strong sta-
bility:

DEFINITION 2.1. A sequence {U™} is said to be strongly stable in a given semi-
norm || - || if JU™T|| < ||U™]| for all n > 0.

Strong stability turns out to have an interesting relationship to the more classical
concept of contractivity (see e.g., [23, 7, 8]). In this case for equations (1.2) satisfying
a one-sided Lipschitz condition, we have that the distance between all exact solutions
starting from different initial conditions is nonincreasing in time. It is reasonable to
then require the same property of the numerical solution; i.e., [|[U* — U] <
||U™ — U™ for all n > 1. In classical stability analysis, U" is usually assumed to
be a perturbation of U™. It is interesting that many of the optimal SSP schemes
found in [25] agree with optimal contractive schemes in [8]. In fact, recent work by
Ferracina and Spijker [2] for schemes with positive coefficients shows that the step
size coefficient C (see below) for strong stability is equivalent to the related quantity
R(A,b) [8] arising in contractivity studies.

To begin our analysis, assume that upwind spatial discretizations are appropriate
and consider an s-stage, explicit Runge-Kutta method written in the form

v =y (2.1a)
i—1
UD =3 (aaU® + At F(UW)),  i=1,2,...,s, (2.1b)
k=0
urtt =y, (2.1c)
where all the a;; > 0 and a;, = 0 only if B =0 [21].
For consistency, we must have that E;g_:lo air = 1,1 =1,2,...,s. Hence, if

both sets of coefficients a;, B are nonnegative, then (2.1) is a convex combination
of forward Euler steps with various step sizes %At. The strong stability property
follows easily from this observation.

The Runge-Kutta scheme (2.1) is not written in standard Butcher array form;
however, the representation (2.1) maps uniquely to a Butcher array. On the other
hand, written in this form, it is particularly convenient to make use of the following
result [22, 4]:

THEOREM 2.2. If the forward FEuler method is strongly stable under the CFL
restriction At < Atpg, then the Runge-Kutta method (2.1) with By, > 0 is SSP

provided

At < CAtrpg,
where C' is the CFL coefficient
. Qg
C = min .
ik Bik

SSPRK schemes with negative coefficients 3, are also possible with the appropri-
ate interpretation. Following the procedure first suggested in [21], whenever B < 0,
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the operator F(-) is used instead of F(-), where F(-) approximates the same derivatives
as F'(-) but is assumed to be strongly stable for Euler’s method solved backwards in
time under a suitable time-step restriction. In practice, this corresponds to a change
in upwinding direction, or in other words, downwinding. This allows the following
generalization of Theorem 2.2:

THEOREM 2.3. Let Euler’s method applied forward in time combined with the
spatial discretization F(-) be strongly stable under the CFL restriction At < Atppg.
Let Euler’s method applied backward in time combined with the spatial discretization
F(-) also be strongly stable under the same CFL restriction At < Atpg. Then the
Runge-Kutta method (2.1) is SSP provided

At < CAtrpg,
where C is the CFL coefficient
. Qg
C =min —, 2.2
ik |Bik] 22)

where By F(+) is replaced by Blkﬁ() whenever ;. is negative.

We note that the assumptions on strong stability of Euler’s method applied for-
ward and backward in time restricts the theoretical advantages of this result to non-
dissipative equations such as (1.1).

Irreducible explicit Runge-Kutta methods have one (new) function evaluation per
stage. We note that if every coefficient (;;, is positive, then the number of stages is
trivially equal to the number of function evaluations. However, if both F(U(*)) and
F(U™) are required for some k, the Runge-Kutta method (2.1) has more function
evaluations! than stages. So the first step in creating a fair comparison of the com-
putational cost of a given Runge-Kutta method and in deriving optimal schemes is
to consider general methods that allow only one (new) function evaluation per stage.
A necessary and sufficient condition for this is that the non-zero coefficients 5; for a
given k are all of the same sign. To see this, let _ be the set of levels k£ such that
all B <0 and we consider

Uy — pn
i—1 -
UD =" apU® + At BuF(UW)) k€ K- i=1,2,...,5—1 (23)
k=0 Bir F(U®))  otherwise
U’n+1 — U(s)

For the remainder of the paper, we will tacitly assume that the schemes under con-
sideration are of this form. Naturally schemes that are written combining positive
and negative coefficients ;; within a given level k can be augmented with additional
stages to be of this form. Thus, without loss of generality, we have that the total
number of evaluations of F(-) and F(-) is identically equal to the number of stages of
the method.

We note that this formulation allows one to search for the optimal scheme for
a given order and a given number of stages (function evaluations). This is a more

1The only difference between F(-) and F(-) is a change in the upwind direction; so F(-) can
clearly be computed with the same cost as F(-) [4]. Indeed, recent studies make the assumption
that if both F(U®*)) and F(U®)) must be computed for some k, the cost as well as the storage
requirements for that k& doubles [3, 4, 25, 17]; i.e., each is given equal weight.
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appropriate description of what should be optimized than has been considered in
the literature thus far. For example, searching for the scheme with the largest CFL
coefficient (or even effective CFL coefficient, see below) for a given order results in
the number of stages tending to infinity.

Another advantage to this formulation is that schemes can be represented and
implemented in Butcher array form using (3.6) since differences of the form F(U?) —
F(U®) do not arise; i.e., the method can be implemented as

F (Un + At E;;ll ainj) if bl Z 0,

K; = - .
' F (U” + At 23;11 ainj) otherwise,

i=1,2,...,s,

UMt = U™ + ALY biK;.

i=1

This form is often desirable for implementing fifth-order schemes because the storage
requirements can be reduced. We further remark that the differences F(U())—F(U(®))
contribute to artificial dissipation and smearing. For example, this difference is pro-
portional to the discrete Laplacian when first-order upwinding is applied to the linear
advection equation. A natural consequence of our formulation is that during opti-
mization these dissipative differences do not arise, leading to schemes with smaller
errors and less smearing than would otherwise occur.

In Section 5, we compare the computational efficiencies of various Runge-Kutta
methods. In order to make a fair comparison of the relative efficiencies of these
methods and to derive optimal schemes we make the following definition.

DEFINITION 2.4. The effective CFL coefficient Cegr of an SSPRK method is C[s
where C' is the CFL coefficient of the method and s is the number of stages (function
evaluations) required for one step of the method.

As conjectured in Shu and Osher [22] and subsequently proven in Gottlieb and
Shu [3], the optimal two-stage, order-two explicit SSPRK scheme with nonnegative
coefficients is the modified Euler scheme,

UM = U + AtF(U™),

1 1 1

It has a CFL restriction At < Atpg, which implies a CFL coefficient of 1. Henceforth,
we will refer to this scheme as SSP(2,2). In general, we adopt the convention of
referring to the best (in terms of effective CFL coefficient) known s-stage, order-p
explicit SSPRK scheme as SSP(s,p), where s is equal to the total number of function
evaluations of F(-) and F(-). In [25] a class of s-stage, order-two explicit SSPRK
schemes was given and proved to be optimal with a CFL coefficient of s — 1.

Shu and Osher [22] also conjectured that the optimal three-stage, order-three
explicit SSPRK scheme with nonnegative coefficients is

UMD = U™+ AtF(U™),

1 1
U® — gU” + ZU(D + ZAtF(U(”),
n+l — EU" + 2(](2) + 2AtF(U(z))
37 T3 3 ’
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which has a CFL coefficient of 1 as well. The optimality of this scheme was later
proved by Gottlieb and Shu [3]. This scheme is commonly called the Third-Order
TVD Runge-Kulta scheme, but we will refer to it as SSP(3,3).

In [20], Ruuth and Spiteri derived a linear bound that can be used to prove
that the optimal four-stage, order-three explicit SSPRK scheme with nonnegative
coefficients is

UM =pun 4+ %AtF(U”),

v =y 4 Iar o)
2 )

2 1 1
@ = Z2gny e 1 (2)
U JU"+ 53U + AP (U),

Urtt =u® 4 %AtF(U@)),

which has a CFL coefficient of 2. This observation appears in [25]. Following [25] we
will refer to this scheme as SSP(4,3).

Moving on to methods with five stages and order three gives a numerically op-
timized scheme, SSP(5,3), with a CFL coefficient of approximately 2.65. It can be
proven that this is also the optimal explicit SSPRK scheme with five stages and order
three via the following line of reasoning. The CFL coefficient C of SSP(5,3) is equal
to the radius of absolute monotonicity R(A,b) for linear constant-coefficient problems
[7]. Because C' < R(A,b) [2] and C (and R(A,b)) for nonlinear problems cannot
exceed that for linear problems, we conclude that SSP(5,3) is the optimal five-stage,
third-order explicit SSPRK scheme. A similar line of reasoning can be applied to
prove the optimality of SSP(3,3), SSP(4,3), as well as the first- and second-order SSP
schemes. Indeed we have produced schemes of the form SSP(s,3), s < 9, with CFL
coefficients equal to R(A,b) for linear constant-coefficient problems; hence they are
also optimal SSP schemes for nonlinear problems. It is worth mentioning, however,
that this approach does not seem to be useful for proving the optimality of schemes
of order greater than 3.

The main advantage offered by these high-stage schemes is that the additional
computational cost incurred per step is more than offset by the increase in stable
step size. For example, SSP(4,3) costs 33% more than SSP(3,3) but offers a 100%
larger CFL coefficient. Thus for SSP(4,3), Ceg = 2/4 = 1/2, whereas for SSP(3,3),
Cet = 1/3. This translates into a (1/2 —1/3)/1/3 = 50% increase in computational
efficiency.

In [3], Gottlieb and Shu proved that it is impossible to have an explicit SSPRK
method of order four in four stages having only nonnegative coefficients? . In Sec-
tion 3.3 we prove the stronger result that it is in fact impossible to obtain a explicit
SSPRK method of order four with any four (general) function evaluations. In [25] a
five-stage, order-four explicit SSPRK scheme with nonnegative coefficients is given.
It turns out that this scheme coincides with Kraaijevanger’s optimal five-stage, order-
four contractive scheme [8, 2]. A further study of explicit SSPRK methods of order
four and s = 6,7, 8 stages can be found in [24]. For the examples investigated in that
paper, it was found that the increased stage number did lead to noteworthy improve-
ments in practical performance. It is also worth mentioning that these high-stage
schemes have modest storage requirements.

2We remark that a proof that it is also impossible to have a fourth-order with four stages and
R(A,b) > 0 appeared earlier and independently of this [8].
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In [20] it is shown that explicit SSPRK schemes with nonnegative coefficients
do not exist with order greater than four. A similar restriction to orders four or
less was proven for contractive schemes [8]. This means that the search for explicit
schemes of order five and higher must involve evaluations of the downwinded operator
F (). In the remainder of the paper we present a unified treatment of explicit SSPRK
schemes that use both upwinded and downwinded operators in terms of effective CFL
coefficient and prove the optimality of several lower-order schemes.

In Section 4 we give the first fifth-order explicit SSPRK methods, optimized in
terms of effective CFL coefficient. A fifth-order explicit SSPRK method in the form
(2.1) was thought to have been found in [22], based on a fifth-order explicit Runge-
Kutta scheme on page 143 of [9], which was in turn based on a particular choice from
a family of fifth-order explicit Runge-Kutta schemes that appeared in [12]. The family
of schemes in question is described by the Butcher tableau

0| 0 0 0 0 0 0

7 | v 0 0 0 0 0

% ‘ %_3%771 312 v 0 0 0 0

1 1 1 1-640 1 1-640

L] L-320-§1=8 6 206 0 0 0 (2-4)

3 9 60— 1% 60—1% 3 9

8] 2 4240 S0 5 3_24¢ 2 0 0
11 384 1 3-960 1 £-960 384 12 8

1‘7—70—727 75 7o 7 70
‘ 7 0 16 2 16 T

90 45 15 45 90

Unfortunately, although this family of explicit Runge-Kutta schemes (2.4) is in-
deed fifth order, there is an error in the particular member of this family upon which
the reported fifth-order explicit SSPRK method was based. This proposed scheme
has coefficient matrix A given by

o
o
o
o
o
o

0 0 0 00
Azggoooo
o 0 3 0 00
0 -5 & & 00
R EE IE

This scheme was meant to correspond to the particular choice of o = 6%1 and (arbi-
trary) v = % However it is easily verified that this scheme does not belong to the
family of explicit fifth-order schemes (2.4), differing in the coefficients as; and az2. In
fact is only second order; e.g., it is easily seen that the third-order condition b” Ac = %

6
is not satisfied.

3. Optimal SSPRK Methods. In this section we prove some optimality re-
sults in terms of effective CFL number for some low-order explicit SSPRK methods
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(p = 1,2,3). Optimal schemes for high-order methods (p = 4,5) are determined nu-
merically. We begin by describing the form of the optimization problem solved in all
cases. We then prove some existence and optimality of some explicit SSPRK meth-
ods of up to order 4. Section 4 contains some numerical results for the first explicit
SSPRK methods of order 5.

3.1. Formulation of the Optimization Problem. We seek to optimize an
s-stage, order-p explicit SSPRK scheme by maximizing its effective CFL coefficient
according to Theorem 2.3. That is, we seek the global maximum of the nonlinear
programming problem

. Qg
max min —-—, 3.1
(ain Bir) |/sz| ( )

where oy, Bik,k=0,1,...,i—1, i =1,2,...,s are real and 0 < a; < 1. As noted
in Section 2, we insist that for each k and i = k+ 1,k + 2,...,s that B > 0 or
Bir < 0 to ensure that the number of function evaluations corresponds to the number
of stages. The case a;; = B;x = 0 is defined as NaN in the sense that it is not included
in the minimization process if it occurs. The objective function (3.1) is also subject
to the constraints

i—1
Yaw=1, i=12..,s, (3.2)
k=0
> 1
> bidi(t)=—, teT, ¢=12,...p (3.3)
= 7(t)

Here, the functions ®;(¢) are nonlinear constraints that are polynomial in ik, B
and that correspond to the order conditions for a Runge-Kutta method to be of order
p (see e.g., [5]); i-e., Ty stands for the set of all rooted trees of order equal to g. The
number of constraints represented by the Runge-Kutta order conditions is equal to

P
Z card(T}),
q=1

where card(T}) is the cardinality of T;. Also, we use the notation b; in the usual
sense of the Butcher array representation of a Runge-Kutta method; again this would
be a polynomial function of the coefficients a;; and B;;. It can be expected that the
particular choice of coefficients a;y,, B that maximizes the quantity (2.2) for a given
Runge-Kutta method will be naturally produced by the solution to this nonlinear
programming problem; hence the result will be a sharp estimate of the CFL coefficient.

However, this formulation of the nonlinear programming problem does not lend
itself easily to numerical solution; see [25] for further discussion. By introducing a
dummy variable z, the nonlinear programming problem can be reformulated as

max z, (3.4a)
(ctir>Bir)
8



subject to

i > 0, (3.4b)
Br+1,k> Bet2,ks - -+ Bsk > 0, (3.4c)
or Bk+1,kaﬁk+2,ka"'7BSkS07 kZO,...,S—l,
i—1
a=1, i=12...,s (3.4d)
k=0
: 1
bj®;(t)=—~, t€T,, q=1,2,...,p, (3.4e)
Z J =7 ,Y(t) q

Jj=1

aik—z|ﬂik|20, k:O,l,...,i—l,i:1,2,...,s. (34f)

Numerical optimization software may be applied to the reformulated problem
(3.4) for various combinations of s and p. In our initial approach we considered using
Matlab’s Optimization Toolbox but found that it was nontrivial to determine an initial
guess to start the nonlinear iteration. Subsequent efforts focussed on BARON [26], a
deterministic, global optimization software package that uses algorithms of the branch-
and-bound type. This approach was found to be superior to Matlab’s Optimization
Toolbox in the sense that it is faster, gives improved optima, and satisfies active
constraints to 15 decimal digits.

In each of the cases s = 7,8,9 numerically optimal fifth-order SSPRK schemes
were found in less than 90 minutes on a (shared) cluster of 96 dual 1.2 GHz Athlon
processors with BARON. See [19] for further details on applying BARON to the
optimization of SSPRK schemes.

3.2. Optimality of Some Low-Order Methods. We now give new results
on optimal effective CFL coefficients for some low-order explicit SSPRK methods.
Previous results primarily focus on optimizing raw CFL coefficients for methods with
nonnegative coefficients. Here we give existence and optimality results in the context
of effective CFL coefficients for methods with no sign restriction on their coefficients.

THEOREM 3.1. For s =1,2,3,..., the optimal s-stage explicit SSPRK method of
order 1 has effective CFL coefficient 1 and can be represented in the form of SSP(s,1);
i.e.,

1 k=i—1, L op=i—1, ,
Qi = . ) Bik =19 ° ) , i=1,2,...,s.
0 otherwise. 0 otherwise.

Before giving the proof of Theorem 3.1, we introduce the following notation and
give two useful Lemmas. We find it convenient to write the general s-stage explicit
Runge-Kutta method in the following form (cf. [3]):

U —yn, (3.5a)

i1 DN
) F(U® f i >
U0 U0 4 ALYk ~(Uk) i m_.O
Pt F({U®)  otherwise

Ut =), (3.5¢)

i=1,2,...,s, (3.5b)

Using the fact that the 8;;, at a particular level are all of the same sign, the coefficients
9



ki are related to the coefficients a;, B recursively by
i—1
Kik = Bix + Z QijjKj- (3.6)
j=k-+1
We remark that the coefficients k;; can be related to the Butcher array quantities
aik, by by

Qi = Ri—1,k—1, k:1,2,...,i—1, 7::1,2,...,8—1,

bk:h:s’kfl, k:1,2,...,s.

It is also important to note that sgn(x;) = sgn(Bik), motivating the use of (3.5).
LeEMMA 3.2. If a method of the form (2.1) with a;, > 0 has a CFL coefficient

c>m >0, then 0 < |kik| < % forallk=0,1,...;i—1,i=1,2,...,s.

Proof. From Theorem 2.3, if ¢ > m > 0, then a;r > m|Bk|, or equivalently |8;x| <

% a;, for all i, k such that oy, # 0.

Now,
i—1
a > 0, Zaik =1, 1=12,...,5, = i<l
k=0
for all 4, k. Hence, |Bix| < % for all 4, k. In particular, |k10| = |B10] < % for any

valid explicit SSPRK method.

We now proceed by induction on stage £ of an s-stage method. Assume |r;;] < -
forj=0,1,....4—1;1=1,2,...,¢. (We have just shown that this result holds for
¢ =1.) Now consider stage (£ + 1) of a valid explicit SSPRK method; i.e., consider
coefficients k41, for K =0,1,...,¢ with

4
Z opqr,r = 1.
k=0

Then using (3.6),

‘
|kesrol = > arirkro + Berio
k=1
¢
<> aprklErol + 1Berol
k=1
— « —
-~ GrLk T 0
k=1
1

IN

m

Similar arguments can be used to show |k¢t1 ;| < % for j=1,2,...,¢. The Lemma
now follows by induction. [ |

LEMMA 3.3. Suppose a consistent s-stage explicit SSPRK method (2.1) has coef-
ficients B, < 0 at £ distinct stages; i.e., Bi <0 for all i and k = k1, ko, ..., k¢ with
0<k <ky<---<k¢i<s—1. Then the CFL coefficient C of the method satisfies
C<s—Vt.
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Proof. Because the method is consistent, we have
s—1
Z Ksk = 1. (37)
k=0

But by the definition of k; it is clear that Ksk,, Ksky,- - - ksk, < 0. Thus

s—1
Z ks > 1. (3.8)

k=0
k#k1,ka,.... ke

The desired result C' < s — £ now follows immediately from applying Lemma 3.2 to

(3.8). [ |

Proof of Theorem 3.1. For nonnegative coefficients {f;} the result for the raw CFL
coefficient has been shown in [25]. By Lemma 3.3, a method containing any Bi < 0
must have a CFL coefficient C' < s — 1 < s, and thus we must have Ce < 1. This
completes the proof.

REMARK 1. As noted [25], despite the increase in raw CFL coefficient, these
first-order methods do not offer a theoretical computational advantage.

THEOREM 3.4. For s = 2,3,4,..., the optimal s-stage explicit SSPRK method
of order 2 has effective CFL coefficient % and can be represented in the form of
SSP(s,2); i.e.,

1 k=i-1, 8 s—% k=1i-1, 19 1
Qi = , ik = ) , 1=1,2,...,s—1.
i 0 otherwise. i 0 otherwise.

L g=o,
i L k=s5-1, .
Qi = 5 k=s—-1 |, ,Bik: S y 1= S.

) otherwise.
0 otherwise.

Proof. For nonnegative coefficients {3;;} the result for the raw CFL coefficient has
been shown in [25]. By Lemma 3.3, any consistent, s-stage method with some 3;; < 0
must have a CFL coefficient C' < s — 1, and thus we must have Cog < 2=L. This

8§
completes the proof. [ |

REMARK 2. As noted [25], in this case the theoretical increase in raw CFL coeffi-
cient more than offsets the increased work per step, leading to an overall computational
advantage with increasing s. However, the effective CFL coefficient is bounded above
by 1.

We now give some specific optimality results for methods of order 3.

THEOREM 3.5. The optimal 3-stage explicit SSPRK method of order 3 has effec-
tive CFL coefficient Cog = 1/3, and an optimal representation is given by SSP(3,3).
Proof. For nonnegative coefficients {f;;} the result for the raw CFL coefficient has
been shown in [3].

Now suppose we allow £;; < 0 in an attempt to improve the CFL coefficient.
From the third-order condition bT Ac = 1/6, we have 319821832 = 1/6 > 0; so the
scheme must have 8;, < 0 at exactly two levels. But then we may apply Lemma 3.3
to show that C' < 1, and hence its Ceg < 1/3. [ |
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THEOREM 3.6. The optimal 4-stage explicit SSPRK method of order 3 has effec-
tive CFL coefficient Cog = 2/3, and an optimal representation is given by SSP(4,3).
Proof. For nonnegative coefficients {f;;} the result for the raw CFL coefficient has
been shown in [25]. By Lemma 3.3 it is clear that C' < 2 if the f; < 0 at two or
more levels. So the only possibility for an improvement in the CFL coefficient over
SSP(4,3) is if Bir, < 0 at precisely one level. But then by the third-order condition
bT' Ac = 1/6, one of the following must hold:

Kazkgakor > 1/6,
Kazkgakao > 1/6,
Kazksikio > 1/6,

Kaaka1 K10 > 1/6.

Supposing that the CFL coefficient is greater than 2 in any of these statements leads
to a condition of the form ky;kijr < 1/8,1=2,3,1<j<i—-1,0<k<j—-1
by Lemma 3.2 and gives rise to a contradiction. Hence the optimal scheme must be

SSP(4,3). [ |

3.3. A Fourth-Order Result. In this section we demonstrate that, even allow-
ing negative coefficients S;x, there is no four-stage explicit SSPRK method of order
4. We begin with a lemma.

LEMMA 3.7. If s = p, the By at a particular level k, for some 0 < k < s —1,
k+1<1i<s, are all of the same sign, i.e., BiBjr > 0 for k+1 <14,j < s, and the
CFL coefficient is positive, then ki, 0 for k+1 <i <s.

Proof. From the order conditions, we have []%_| 8;; -1 = %, so each ;-1 #0,1 <
¢ < s. Since the CFL coefficient is positive, this implies each a;;-1 > 0,1 <7 < s.
Expanding k;; in terms of the o and /3 coefficients (see, e.g., [3]) it is easily seen that
|kij| > |Bj+1,5 HZ:]H Qg+1,%| > 0 proving our result. |

We note that Lemma 3.7 is only relevant for s = p = 1,2,3,43. In this section,

we will of course be interested specifically in the case with s = p = 4.

In proving the main result of this section, we will make extensive use of the
following lemma, which follows immediately from Lemma 3.7 and the definition of
the Kij-

LEmMMA 3.8. If s = p, the By at a particular level k, for some 0 < k < s —1,
k+1<i < s, are all of the same sign, and the CFL coefficient is positive, then
Kik, k + 1 <1 <s are also all of that same sign and are nonzero.

We now give the main result of this section.

THEOREM 3.9. There is no four-stage explicit SSPRK method of order 4 with a
positive CFL coefficient.

Proof. General Case. We proceed by contradiction. If two parameters u and v are
such that w Zv, u Z0,u #1/2, u # 1, v #0, v # 1, and 6uv — 4(u + v) + 3 # 0,

31t is possible to have schemes with s = p > 4 for linear, constant-coefficient problems.

12



then the coefficients x;; 7 0 may be written as functions of u and v [18]:

K10 = u,
K20 = UV — K21,
v(v —u)
2u(l — 2u)’
k3o = 1 — K31 — K32,
1—-w)fut+v—1-(20—1)2

K21

fial = 2u(v — u)[6uv — 4(u + v) + 3]’
iy = (1—=2u)(1—wu)(1-wv)
v(v — u)[buv — 4(u + v) + 3]’
Ii40=1 1—2(u+v)
2 2uv
_ 2v—-1
it = 12u(v —u)(1 —u)’
_ 1—-2u
faz = 12v(v —u)(1 —v)’
1 2u+v)—3
K43 = 3

2 T R —wi—u)

Similar to [3], there are five possibilities to consider:
1. u < 0. If v < 0 then k19k40 < 0. Conversely if v > 0 then k19k20 < 0. Both
results contradict Lemma, 3.8.
2. 0<u<%andv<u.
Ko1kq1 > 0 implies that v < 0. But this implies k1929 < 0, contradicting
Lemma 3.8.
3. 0<u<%andv>u.
Ko1k41 > 0 requires v > % Koo > 0 requires v < 3u — 4u® < 19—6. K3okao > 0
and k31k41 > O require that u > 2 — 5v + 4v2. Since this is a decreasing
function of v for v < &, we obtain v > 2 — 5(3u — 4u?) + 4(3u — 4u?)?.
Rearranging, we find that 0 > 2((2u—1)?+4u?)(2u—1)?, which is impossible.
4. u > % and v < u. We can only have k32k42 > 0 in one of two ways:
(a) 1—u >0 and 6uv —4(u+v) +3 > 0.
Ka1k41 > 0 requires 0 < v < 1. Simple calculation yields

(2 — 6u+ 4u?) + (=5 + 15u — 12u?)v + (4 — 12u + 12u?)v?
2uv(6uv — 4(u + v) + 3) ’

K30 =
hence k39 > 0 requires
A+Bv+Cv? = (2—6u+4u?)+(=5+15u—12u?)v+(4—12u+12u?)v? > 0.

It is easy to show that when % < u < 1wehave A < 0,B < 0, and
C >0. Thusf0r0<v<%wehave

A+Bv+Cv? < max (A,A + %B + iC) = max(4, %(1—2u)(1—u)) < O,I

resulting in a contradiction.
13



(b) 1 —u <0 and 6uv —4(u +v) +3 <0.
Suppose v < 0. Then kigkeo > 0 implies v < —u(4u — 3) < —u and
Koz > 0 implies u + v — 1 — (20 — 1)2 > 0. Together these yield a
contradiction.
Now suppose v > 0. kKoikqy > 0 implies v > % K31kq41 > 0 requires
u+v—1—(2v—1)? <0 which implies

(1—4v)(1-v)=4®-5v+1>u—-1>0.

Given the restrictions on v, this is true only if v < %, contradicting the
requirement that v > 1.

5 u > % and v > u. Ka1k41 > 0 requires that w > 1. This implies k42 > 0;
so by Lemma 3.8 k35 > 0. It is now easily seen that k19 > 0, k21 < 0, and
ka3 > 0. Thus kigke1kszkes < 0, contradicting the fourth-order condition
KiokK21K32K43 = %-

If 6uv — 4(u+v) +3 =0, u =0, or v =0, then this method is not fourth order [18].
Special Cases. There remain three special cases [18, 5], namely

_1 _ 0. _ _1 2 _1
Lu=35v=0kp2=w#0, ko =g —w, K41 = 3, and kg3 = 5.
1. 1 _ _2 _1
2.u=v=735;kiw =g, ki =w #0, kg1 =5 —w, and ky3 = 5.
1. - _1 _ 1 2
Bu=1lLv=g5k3=w#0, kgt = 5 —w, Kgo = 5, and kg = 3.

In these cases, k32 is obtained from
Kazkga = Ka2(1 —v).

The remaining coefficients ko1 and k3; are then the solutions to the (nonsingular)
linear system

Y

| =

KaoKo1 U + Kaz(Kg1U + K320) =
K42kl + Kazks: = ka1 (1 — ).

It is easily verified that in each case the k;, fail to have the same sign at each level
whenever negative 3;; are considered. [ |

4. Fifth-Order Explicit SSPRK Methods. In this section, we give the re-
sults of the numerical optimization procedure outlined in Section 3. Examples of op-
timal explicit SSPRK methods of order 4 and up to 8 stages with positive coefficients
appear in [24]. We have also constructed optimal explicit SSPRK methods of order
3 and up to 9 stages. Here we design the first optimized fifth-order explicit SSPRK
methods. No formal proofs of optimality are given; however the methods described
here are the results of extensive numerical testing. We now give the coefficients of the
Butcher tableaus for SSP(7,5), SSP(8,5), and SSP(9,5) in Tables 4.1-4.3 respectively.
The Butcher tableau format is provided because this is the more advantageous format
for implementation.

5. Numerical Studies. In this section, we study the numerical behaviour of our
fifth-order schemes and the optimal known fifth-order SSP multistep method (1.3) for
a few test problems designed to capture solution features that pose particular difficul-
ties to numerical methods. Our focus here is to illustrate the stability behaviour of
various fifth-order schemes rather than to provide detailed accuracy study. If a study
of the relative error constants was desired it would be more appropriate to consider
systems where the spatial discretization errors are dominated by the time stepping

14



TABLE 4.1
Butcher tableau entries for SSP(7,5). CFL coefficient is 1.178508348471858.

[Centry | value |
a(2,1) 0.392382208054010
a(3,1) 0.310348765296963
a(3,2) 0.523846724909595
a(4,1) 0.114817342432177
a(4,2) 0.248293597111781
a(4, 3) 0
a(5,1) 0.136041285050893
a(5,2) 0.163250087363657
a(5, 3) 0
a(5, 4) 0.557898557725281
a(6, 1) 0.135252145083336
a(6, 2) 0.207274083097540
a(6, 3) -0.180995372278096
a(6, 4) 0.326486467604174
a(6,5) 0.348595427190109
a(7,1) 0.082675687408986
a(7,2) 0.146472328858960
a(7,3) -0.160507707995237
a(7,4) 0.161924299217425
a(7,5) 0.028864227879979
a(7,6) 0.070259587451358

b(1) 0.110184169931401
b(2) 0.122082833871843
b(3) -0.117309105328437
b(4) 0.169714358772186
b(5) 0.143346980044187
b(6) 0.348926696469455
b(7) 0.223054066239366
TABLE 4.2

Butcher tableau entries for SSP(8,5). CFL coefficient is 1.875684961641323.

[ Centry Tl value |
a(2, 1) 0.276409720937984
a(3,1) 0.149896412080489
a(3,2) 0.289119920124728
a(4,1) 0.057048148321026
a(4, 2) 0.110034365535150
a(4, 3) 0.202903911101136
a(5, 1) 0.169059298369086
a(5, 2) 0.326081269617717
a(5,3) 0.450795162456598
a(5,4) 0
a(6,1) 0.061792381825461
a(6, 2) 0.119185034557281
a(6, 3) 0.199236908877949
a(6, 4) 0.521072746262762
a(6, 5) -0.001094028365068
a(7,1) 0.111048724765050
a(7,2) 0.214100579933444
a(7,3) 0.116299126401843
a(7,4) 0.223170535417453
a(7,5) -0.037093067908355
a(7, 6) 0.228338214162494
a(8, 1) 0.071096701602448
a(8, 2) 0.137131189752088
a(8, 3) 0.154859800527808
a(8, 4) 0.043090968302309
a(8,5) -0.163751550364691
a(8, 6) 0.0440887715319045
a(8,7) 0.102941265156393

b(1) 0.107263534301213
b(2) 0.148908166410810
b(3) 0.105268730914375
b(4) 0.124847526215373
b(5) -0.068303238208102
b(6) 0.127738462088848
b(7) 0.298251879839231
b(8) 0.156024937628252
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TABLE 4.3
Butcher tableau entries for SSP(9,5). CFL coefficient is 2.695788289294857.

[Centry | value |
a(2,1) 0.234806766829933
a(3,1) 0.110753442788106
a(3,2) 0.174968893063956
a(4,1) 0.050146926953296
a(4,2) 0.079222388746543
a(4, 3) 0.167958236726863
a(5,1) 0.143763164125647
a(5, 2) 0.227117830897242
a(5,3) 0.240798769812556
a(5,4) 0
a(6,1) 0.045536733856107
a(6, 2) 0.071939180543530
a(6, 3) 0.143881583463234 [Centry [ value
a(6,4) 0.208694357327376
b(1) 0.088934582057735
a(6,5) -0.013308014505658
b(2) 0.102812792047845
a(7,1) 0.058996301344129
b(3) 0.111137942621198
a(7,2) 0.093202678681501
b(4) 0.158704526123705
a(7,3) 0.109350748582257
b(5) -0.060510182639384
a(7,4) 0.227009258480886
b(6) 0.197095410661808
a(7,5) -0.010114159945349
b(7) 0.071489672566698
a(7, 6) 0.281923169534861
b(8) 0.151091084299943
a(8, 1) 0.114111232336224
b(9) 0.179244171360452
a(8, 2) 0.180273547308430
a(8, 3) 0.132484700103381
a(8, 4) 0.107410821979346
a(8, 5) -0.129172321959971
a(8, 6) 0.133393675559324
a(8,7) 0.175516798122502
a(9,1) 0.006188287148324
a(9, 2) 0.151958780732081
a(9, 3) 0.111675915818310
a(9,4) 0.090540280530361
a(9,5) -0.108883798219725
a(9, 6) 0.112442122530629
a(9,7) 0.147949153045843
a(9, 8) 0.312685695043563

error. Experiments using the standard implementation of Fehlberg’s fifth-order ex-
plicit Runge-Kutta method [5] are also included because this method is commonly
used in method-of-lines discretizations of hyperbolic conservation laws. We remark
that Fehlberg’s scheme does not have a positive CFL coefficient in its standard imple-
mentation (using only F'(-)) because SSP methods of order greater than four require
evaluations of F(-) [20].

We remark that tests using the popular Dormand-Prince scheme [5] gave results
very similar to Fehlberg’s scheme. For clarity, we do not include these simulations in
our plotted results.

5.1. Test Problems. There are a variety of solution features in computational
fluid dynamics that commonly cause numerical problems. For example, many numer-
ical methods produce significant errors near sonic points (points where the wavespeed
equals zero). Upwind methods in particular are forced to give sonic points special
consideration since the upwind direction changes at sonic points. Shock waves, con-
tact discontinuities, and expansion fans may also lead to a variety of serious problems
including oscillations, overshoots, and smearing that can spread discontinuities over
several cells. In particular, contact discontinuities do not have any physical compres-
sion and thus smearing increases progressively with the number of time steps. Even
when approximating smooth solutions, most numerical methods exhibit obvious flaws.
For example, many stable numerical methods continuously erode the solution, leading
to amplitude and dissipation errors [11].

To investigate the behavior of our time-stepping schemes, we consider three of
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Laney’s five test problems [11]. These three problems involve all of the important
flow features identified above: shocks, contacts, expansion fans, sonic points, and
smooth solutions. Similar to Laney, we focus on the behaviour of the numerical
scheme for interior regions rather than boundaries and impose periodic boundary
conditions on the domain [—1,1]. It is known that sometimes a conventional (and
intuitive) treatment of the boundary data (especially in the case of inflow boundary
conditions) within the stages of a Runge-Kutta method can lead to a deterioration
in the overall accuracy of the integration. We refer to [1] and references therein for a
discussion of this problem and a method for its resolution. The spatial discretization
and the results of three test cases follow.

5.2. Spatial Discretization. Similar to [22, 25], we choose finite-difference
Shu-Osher methods (ENO) to spatially discretize the equations. These methods are
derived using flux reconstruction and have a variety of desirable properties. For ex-
ample, they naturally extend to an arbitrary order of accuracy in space, and they are
independent of the time discretization, thus allowing experimentation with different
time discretization methods. Moreover, educational codes are also freely available
[11, 10], an attribute which is desirable for standardizing numerical studies. Since we
are focusing on fifth-order Runge-Kutta methods we carry out our simulations using
a fifth-order spatial discretization. We further note that flux splitting is carried out
according to

FHO) = SO + 0y 1),

F(U) = S(FU) ~ iy o0)
where oy, ,, = max{|f (U7, |f'(U)]}. To evaluate F(-) we simply negate the
discretization that arises when we apply the Shu-Osher finite difference method to
the PDE evolved backwards in time* (see [21] for further details on the procedure).
For further details on the underlying discretization as well as code for the spatial
discretization, see [11, 10].

It is noteworthy that high-order, fully TVD spatial discretization schemes are also
available; see Osher and Chakravarthy [16]. In these numerical studies, we choose Shu-
Osher spatial discretization schemes rather than TVD schemes because TVD schemes
only obtain between first- and second-order accuracy at extrema and they have “been
largely superseded by Shu and Osher’s class of high-order ENO methods” [11].

It is also noteworthy that recent variations on Shu-Osher methods such as methods
based on WENO reconstructions (e.g., [14, 6]) also naturally combine with SSPRK
schemes. See [11] for detailed discussions on these and other spatial discretizations
appropriate for hyperbolic conservation laws.

470 illustrate the procedure, consider a first-order spatial discretization of F' for Burgers’ equa-
tion. To proceed we need to construct an upwind spatial discretization for Burgers’ equation evolved
backwards in time, i.e.,

Ut = Ulg.

Carrying out a first-order upwind discretization with a uniform discretization step size h gives —F":

i) U = Up)/h i T; >0
U;(U; —Uj_1)/h otherwise

from which F is trivially obtained.
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5.3. Test Case 1: Linear advection of a sinusoid. In this test case, the
smooth initial conditions

u(z,0) = —sin(7x)
are evolved to time ¢t = 30 according to the linear advection equation

Ou Ou 0
ot " or
using a constant grid spacing of Az = 1/80. Because this evolution causes the initial
conditions to travel around the periodic domain [—1,1] exactly 15 times, it is clear
that the exact solution is just u(x,30) = — sin(zx). Test Case 1 effectively illustrates
the evolution of a smooth solution with no sonic points and is useful for verifying
convergence rates for high-order schemes. Moreover, even on completely smooth so-
lutions most numerical methods designed for hyperbolic conservation laws exhibit
obvious flaws [11]. This test case is quite helpful for understanding phase and ampli-
tude errors but should not be used to study dispersion because only one frequency
is present in the exact solution. It is also informative to contrast these results with
those derived for problems involving shocks and other discontinuities.
To quantify the accuracy of the computed solution, we use the logarithm of the
[y errors, i.e.,

N
1
m&0<ﬁ§:na—M@3mO,

=1

where N is the number of grid points and z; is the i*" grid node. A plot of the error is
given in Figure 5.1. To ensure a fair comparison for methods with a different number
of stages, the error is plotted as a function of the effective CFL number® rather than
the CFL number itself. This implies that for a particular plot, the total number of
function evaluations at a particular abscissa value will be the same for each scheme.
We start calculating errors for an effective CFL number of 0.02 and continue until the
numerical method is so unstable that a value of NaN is returned; i.e., the scheme has
become completely unstable.

In this test example, the main conclusion is that Fehlberg’s scheme and our new
fifth-order explicit SSPRK schemes all outperform the multistep scheme (1.3) by more
than 350%, with SSP(9,5) giving more than a 400% improvement. It is not surprising
that Fehlberg’s scheme performs well on this smooth problem because schemes based
purely on a linear stability analysis are expected to perform well. SSP schemes are
designed to outperform on problems involving discontinuities in the solution or its
derivatives, so in this case there is no reason to expect that schemes derived using a
nonlinear stability analysis will necessarily outperform classical schemes based on a
linear stability analysis.

5.4. Test Case 2: Linear advection of a square wave. In this test case, the
discontinuous initial conditions

(2,0) 1 for |z| < 1/3,
u(z,0) =
0 for1/3<|z| <1,

5Similar to the definition of effective CFL coefficient, the effective CFL number of an SSPRK

method is (%) At where s is the number of stages required for one step of the method.

Az’
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Fic. 5.1. l1 errors as a function of the effective CFL number for Test Case 1.

are evolved to time ¢t = 4 according to the linear advection equation

ou Ou _ 0

ot + oxr
using a constant grid spacing of Az = 1/320. Because this evolution causes the initial
conditions to travel around the periodic domain [—1, 1] exactly 2 times, it is clear that
the exact solution at the final time is just u(z,4) = u(z,0). Test Case 2 exhibits two
jump discontinuities in the solution that correspond to contact discontinuities. This
test case nicely illustrates progressive contact smearing and dispersion.

The log of the I errors as a function of the effective CFL number are plotted in
Figure 5.2. Based on these plots, it is immediately clear that a material improvement
in stability is obtained using our new fifth-order SSPRK schemes. Indeed, our schemes
all outperform the multistep scheme (1.3) by 200% or more, with SSP(9,5) giving a
340% improvement. We also find that our schemes significantly outperform Fehlberg’s
scheme on this nonsmooth test. In particular, SSP(9,5) gives a 40% improvement over
Fehlberg’s scheme.

5.5. Test Case 3: Evolution of a square wave by Burgers’ equation. In
this test case, the discontinuous initial conditions

(£,0) 1 for |z| < 1/3,
u(z,0) =
-1 for1/3 < |z| <1,

are evolved to time t = 0.3 according to Burgers’ equation

ou 0 (1 ,\
E+%<§“>_O
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using a constant grid spacing of Az = 1/320. In this example, the jump at z = —1/3
creates a simple centered expansion fan and the jump at z = 1/3 creates a steady
shock. Until the shock and expansion fan intersect (at time ¢ = 2/3), the exact
solution is

] for —oco <z < by,
(e ) = _1+2% for by < z < bo,
1 for be < & < bshock,
-1 for bspocr < T < 00,

where by = —1/3 —t, by = —1/3 + t and bgpeer. = 1/3 [11]. Test Case 3 is partic-
ularly interesting because it illustrates the behaviors near sonic points (v = 0) that
correspond to an expansion fan and a compressive shock.

The log of the [; errors as a function of the effective CFL number are plotted
in Figure 5.3. In this nonlinear test case, we find a dramatic improvement for our
new schemes over the multistep scheme (1.3). They all give more than a 350% im-
provement, with SSP(9,5) giving more than a 575% improvement. We also find that
our schemes significantly outperform Fehlberg’s scheme on this nonsmooth test. The
SSP(9,5) scheme, in particular, gives more than a 150% improvement over Fehlberg’s
scheme.

6. Conclusions. We have studied high-order strong-stability-preserving explicit
Runge-Kutta methods with downwind-biased spatial discretizations. We find that by
requiring that the non-zero coefficients 3;, for a given k are all of the same sign we ob-
tain a more appropriate description of what should be optimized. This leads to more
efficient schemes with less smearing. When the order of the explicit Runge-Kutta
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method is less than or equal to four we prove in a variety of cases that there is no
advantage in terms of effective CFL coefficient to using downwind-biased spatial dis-
cretizations. To achieve explicit SSPRK methods with fifth- or higher-order accuracy,
however, downwind-biased discretizations are necessary. This paper provides the first
examples of such schemes. We find that these new schemes are much more efficient
than existing fifth-order explicit SSP multistep methods (both theoretically and in
practice) and handily outperform classical explicit fifth-order schemes on nonsmooth
problems. In particular, we found that in our marginally resolved test cases (involv-
ing shocks and contact discontinuities) larger time steps and improved efficiency were
found as the effective CFL coefficient (and the number of stages) increased. In a
well-resolved problem (Test Case 1), however, the practical performance of SSPRK
schemes and classical Runge-Kutta schemes was very similar. This suggests that
high-order SSPRK schemes with large effective CFL coefficients have the potential
to provide high-order accuracy in smooth regions of the flow while still yielding large
stable steps in marginally resolved regions. It is our hope that by providing numer-
ically optimal schemes of this type we will stimulate further numerical studies and
comparisons of SSPRK schemes against more classical approaches.
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