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Abstract

Moving interfaces that self-intersect arise naturally in the geomet-
ric optics model of wavefront motion. Ray tracing techniques can
be used to compute these motions, but they lose resolution as rays
diverge. In this paper we develop a new numerical method that main-
tains uniform spatial resolution of the front at all times. Our approach
is a fixed grid, interface capturing formulation based on the Dynamic
Surface Extension method of Steinhoff and Fan [10]. The new meth-
ods can treat arbitrarily complicated self intersecting fronts, as well
as refraction, reflection and focusing. We also further extend this
approach to curvature dependent front motions, and the motion of
filaments. We validate the new methods with numerical experiments.
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1 Introduction

In the limit of short wavelengths, it is well known that a wavefront mov-
ing through a medium can be described as a moving surface with a normal
velocity that depends on position,

!v = c(x)n̂

where n̂ is the local normal to the front and c(x) is the local wave speed.
Notable examples include the short wavelength approximation of seismic and
electromagnetic pulses, as well as the familiar example of ripples moving on
the surface of a pond. An important feature of this idealized wavefront
motion is that intersecting wavefronts pass through each other, and also that
they reflect and refract off boundaries.

Many interesting numerical methods have been developed to compute
these complex motions (see, e.g., [3, 4, 5, 6, 12, 13]). The most detailed
approach is to discretize the governing wave equations directly (e.g., [13]).
Unfortunately, this approach is often impractical because it requires that
the discretization resolve the short wavelengths, which may be thousands of
times smaller than the length scale of interest.

At the other extreme, ray tracing can be used to evolve wavefronts ac-
cording to geometrical optics (e.g., [5]). Here, the front is represented using
a number of markers which are moved independently. This approach has the
advantage of simplicity, but the markers tend to diverge which leads to loss
of resolution and aliasing of the front.

To maintain a uniform resolution of the interface, it is natural to consider
a fixed grid, interface capturing formulation such as the Level Set method [8].
Here, the wavefront is represented as the zero contour of a smooth function
φ, which in turn evolves according to the level set equation

φt + c(x)|∇φ| = 0.

This can be solved accurately and efficiently using numerical Partial Differen-
tial Equation (PDE) techniques. Unfortunately, the basic level set method is
inappropriate for treating evolving wavefronts because the solutions to this
PDE will have fronts merge upon colliding, rather than pass through one
another.

To obtain a fixed grid method appropriate for capturing wavefront self-
intersection Steinhoff and Fan proposed Dynamic Surface Extension (DSE)
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methods [9, 10]. These schemes start from some spatially distributed repre-
sentation of the interface (similar to, but more general than, the level set φ
representation), and the motion is achieved by alternating between two steps:
a simple short time evolution comparable to ray tracing, and an extension
step that updates the distributed representation to reflect the new front lo-
cation. DSE methods automatically give a uniform resolution of expanding
fronts by using a fixed spatial grid, and the fronts automatically pass through
one another rather than merging.

The original DSE methods are not well suited to certain fundamental self-
intersection problems such as the formation of swallowtails. In this paper, we
show how to generalize a basic DSE scheme (the Closest Point Method) to
handle this fundamental problem, as well as all other complex intersections.
We further generalize our approach to reflecting and refracting wavefronts.
We also discuss new extensions for propagating intensity values, for treating
curvature-dependent flows, and for treating the motion of filaments (or more
generally, objects of co-dimension > 1).

The outline of the paper follows. In Section 2, we review the Closest Point
Method and discuss its key properties. In Section 3, we give a generalization
of the method (the Arrival Time Method) which produces a much more uni-
form representation of the interface. Sections 4 and 5 explain how to extend
our method to problems involving refraction and reflection. In Section 6, we
describe how to treat intensity by retaining other attributes of the wavefront,
such as wavefront curvature. Section 7 extends our approach to more general
curvature-dependent motions. Finally, in Section 8 we summarize our results
and outline some potential areas for future research. Throughout the paper,
numerical experiments are provided to validate our methods.

2 The Closest Point Method

To evolve self-intersecting wavefronts on a fixed grid, Steinhoff and Fan [9]
proposed Dynamic Surface Extension methods. The cornerstone of this ap-
proach is to choose a suitable distributed representation of the wavefront
surface. The form of this representation depends on the problem, and is
dictated by the information required to accurately and efficiently evolve the
surface. But generally speaking, the idea is to store at each point in space x
a representation of the surface near some “tracked point” TP (x) located on
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the surface. A two-step scheme is then used to evolve this distributed rep-
resentation for a short time ∆t. First, the Evolution Step updates the local
surface representation at each x based on the surface motion law at TP (x).
During this evolution, the representation may develop inconsistencies or be-
come less well behaved, but this is repaired in the second step, which extends
the representation from near the wavefront (where it is most accurate) to
points further away, perhaps reassigning new tracked points TP (x) to each
x in the process. Note that non-geometric surface properties such as optical
intensity may considered as part of the “representation”, and these can be
evolved and extended off the interface in this manner as well [10].

A particularly instructive DSE scheme is the Closest Point Method (see
[9, 10]). In this section, we describe the Closest Point Method and discuss
its key properties. Improvements and extensions to this basic method will
be the focus of subsequent sections.

2.1 The Method

To construct a DSE scheme for wavefront propagation we must first select
an appropriate distributed surface representation, i.e. one well suited to
representing self-intersecting surfaces. For contrast, note that the level set
method relies on a particular distributed surface representation, namely the
level set function φ(x). This is often taken to be the (shortest) distance
from x to the surface, with suitable signs. In the language of DSE, this
can be viewed as letting the tracked point at x, TP (x), be the point on
the surface closest to x, CP (x), and the only local information we retain
about the surface near this point is its distance to x (with a sign). However,
this representation (i.e. φ) leads to unstable kinks, which naturally produce
mergings (or curve annihilation) rather than allowing curves to pass through
one another.

A better behaved and more convenient alternative is to store the coordi-
nates of the closest point itself, rather than just its distance, i.e. we represent
the surface by the value of the vector valued function CP (x). This is smooth
on the interface near self-intersections (although it does have discontinuities
off the interface, at points that are equidistant between different parts of
the surface). Further, this choice can equally well represent geometries for
which the distance function would be highly singular, such as surfaces with
boundaries (i.e. a non-closed surface 3D, or a curve with endpoints in 2D) or
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objects of any codimension (e.g. points, curves or surfaces in 3D). Also, note
that a closest point representation is constant normal to a surface whereas a
distance function representation (such as that used in level set methods) is
constant tangential to a surface [10].

For moving wavefronts, we must specify some additional piece of informa-
tion since there are at least two possible normal directions (more at kinks)
for any curve or surface. We prefer to store a unit vector in the direction
of propagation because this choice automatically generalizes to objects of
arbitrary codimension. Using this representation in the Dynamic Surface
Extension approach gives the Closest Point Method for moving a surface
Γ ⊂ Rn normal to itself with a speed c (which may depend on position) (cf.
[10]):

The Closest Point Method:
Initialize. For each point x ∈ Rn: Set the initial tracked point TP (x) equal to
the closest point (to x) on the initial surface Γ0. Set n̂ equal to the surface
normal at the tracked point TP (x), and let c denote the wavefront speed
at the tracked point.

Repeat for all steps:
(1) Evolve the tracked point TP (x) according to the local dynamics

for a time ∆t: TP (x)t = cn̂.
(2) Extend the surface representation by resetting each tracked point TP (x)

equal to the true closest point on the updated surface Γ, where Γ is
defined to be the locus of all tracked points, ie, Γ = {TP (x)|x ∈ Rn}.
Replace each n̂(x) by the normal at the updated TP (x).

End.

Intuitively, the manner in which this method treats self-intersection is
most easily understood by considering how it treats two colliding, planar
waves. Initially, each nodal tracked point value is set equal to the closest
point on the nearest wavefront (Figure 1a). These tracked points are updated
during the Evolution Step according to TP (x)new = TP (x)original + cn̂∆t
(Figure 1b). Notice that the updated tracked points are no longer the true
closest points. Finally, the Extension Step resets each nodal value to be a
true closest point (Figure 1c).

We now direct our attention to the implementation of the Closest Point
Method.
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(a) Initialization (b) Evolve (c) Extend

CP(x)

x x x

CP(x)

TP(x)

Figure 1: Two colliding planar waves and a sample grid node x. (a) To
initialize, the closest point CP (x) of the nearest wavefront is stored. (b)
Evolution is carried out pointwise according to TP (x)t = cn̂. (c) During the
Extension Step, nodal values are set equal to true closest point values.

2.2 Implementation

In practice, the Initialization Step of the Closest Point Method can often
be handled analytically in simple problems. More complicated wavefronts
can be treated using fast tree-based algorithms [11]. Implementation of the
Evolution Step is also straightforward because each tracked point is just
updated according to TP (x)new = TP (x)original + cn̂∆t. The final Extension
Step is more complicated and is typically divided into two parts, a search
step and an interpolation step (cf. [10]).

In the search step, the updated value for a node is taken to be the closest of
all tracked points (localization of this step is possible—see Section 3.3) [10].
This gives an improved approximation of the closest point representation.
Unfortunately, this process cannot create any new tracked points so diverging
wavefronts will lose resolution. Thus, a second interpolation step is needed
in order to maintain a uniform representation.

Steinhoff, Fan and Wang carry out this interpolation by averaging over
nearby nodes [10]. This very simple approach is effective for a variety of
interesting problems [10], but it can produce spurious wavefronts in certain
cases and is low order accurate. For these reasons, we consider a higher
order interpolation based on nearby neighbors. These neighbors (call them
y and z) are chosen so that x, y and z are collinear and roughly parallel to
the interface (see Figure 2). If the tracked points for x and y are distinct
and lie on the same smooth curve, then an improved estimate for the closest
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(a) (b) (d)(c)

x x x x

Figure 2: For a node x we interpolate using 3 points (solid) which are roughly
parallel to the interface. Taking θ to be the angle n̂(x) forms with the
horizontal axis we find 4 cases in 2D: (a) π

8 ≤ θ < 3π
8 or 9π

8 ≤ θ < 11π
8 ,

(b) −π
8 ≤ θ < π

8 or 7π
8 ≤ θ < 9π

8 , (c)
5π
8 ≤ θ < 7π

8 or 13π
8 ≤ θ < 15π

8 , (d)
3π
8 ≤ θ < 5π

8 or 11π
8 ≤ θ < 13π

8 .

point to x can be generated using the nodal values at x and y (see Figure 3).
Similarly, an improved closest point estimate can be attempted using the
nodal values at x and z. The closest of these two results to x is taken to be
the updated nodal value.

Notice that this Extension Step does not yield a true closest point rep-
resentation. However, closest point values are expected near the interface.
Furthermore, this extension has the useful property that every nodal value
represents some tracked point on the interface.

We now direct our attention to how the Closest Point Method treats two
prototype problems in wave propagation: rarefaction fans and swallowtails.

2.3 Numerical Experiments

We now apply the Closest Point Method to the problem of evolving wave-
fronts according to a constant normal velocity, !v = cn̂. In these experiments,
the fronts are plotted simply as the locus of all tracked points at a given
time, {TP (x)|x ∈ G}, where G is a uniform grid of points on the domain.

First, consider the motion of a square curve moving outward with unit
speed, as is shown in Figure 4. Using the Closest Point Method, a rarefaction
fan is automatically and uniformly generated. Notice that the Evolution Step
always yields a closest point representation, so the Extension Step does not
change the tracked point TP (x). Thus, the overall error is comprised entirely
of roundoff errors generated from the Initialization and Evolution Steps.

An entirely different, swallowtail solution also occurs in many problems.
For example, consider an ellipse moving inward with unit speed (e.g., Fig-
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x
y

(a) Points far apart (c) Consistent case

x
y

x
y

(b) Normals disagree

TP(x)

TP(y)

TP(x)

TP(y)
TP(y)

CP(x)

TP(x)

Figure 3: (a) If the tracked points TP (x) and TP (y) for nodes x and y are
far apart (||TP (x) − TP (y)|| > 2∆x) then we take TP (x) to be the best
estimate for the closest point to x. (b) If the corresponding normals are
inconsistent, we take TP (x) to be the closest point estimate to x. Here,
we assume TP (x) and TP (y) lie on different wavefronts whenever the angle
between their normals is greater than 0.2. (c) Otherwise, an arc is drawn
between TP (x) and TP (y) based on TP (x), TP (y) and n̂(TP (x)). The
desired estimate is given by the closest point on the arc to x.
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Figure 4: Rarefaction fans are given exactly by the Closest Point Method.
Here, a wavespeed equal to 1 was considered. Discretization step sizes of
∆x = 1/80 and ∆t = 1/40 were used throughout the calculation. In this
example (and others throughout the report), wavefronts are visualized by
plotting all nodal values. Notice that this simple visualization can produce
a dotted effect when the interface is aligned with the grid.

(a) t = 0.0 (b) t = 0.1 (c) t = 0.2
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Figure 5: An ellipse evolving inward with unit speed: (a) Initial ellipse, (b)
Kinks form, (c) Wavefront passes through itself to form a swallowtail.

(a) t = 0.0 (b) t = 0.1 (c) t = 0.175

ure 5). Here, the front forms two kinks (Figure 5b) and passes through itself
to form a swallowtail (Figure 5c). Unfortunately, this swallowtail solution is
not adequately reproduced using the Closest Point Method. This flaw causes
gaps in the interface which propagate and grow (see Figure 6).

Thus the Closest Point Method is inadequate for treating the prototype
swallowtail problem. Fortunately, a generalization based on the idea of first
arrival times is possible. This approach will be the focus of the next section.

3 First Arrival Times

As demonstrated in the previous section, the Closest Point Method can pro-
duce gaps in the interface. We now discuss a method which gives a much
more uniform representation of the interface and validate our approach with
numerical experiments.

3.1 The Method

The formation of gaps for the Closest Point Method is most easily understood
by considering how swallowtails are represented.

Consider, for example, the swallowtail representation shown in Figure 7a.
When the swallowtail is small, nodal values over-represent corners. Since
large regions are used to represent corner points, few grid points are available
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Figure 6: Using the Closest Point Method, swallowtails are not accurately
reproduced. Gaps in the interface form, and these propagate and grow. Here,
a wavespeed equal to 1 was considered. Discretization step sizes of∆x = 1/80
and ∆t = 1/40 were used throughout the calculation.

(d) t = 0.450 (e) t = 0.600 (f) t = 0.750

(a) t = 0.000 (b) t = 0.150 (c) t = 0.300
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to represent the end of the swallowtail (see Figure 7b). This uneven treatment
leads to gaps in the interface which propagate and grow.

To obtain an improved result, a more uniform representation is needed.
For example, we can set each nodal value to be the point on the interface
with the minimal arrival time rather than the minimal distance. In a homo-
geneous medium, without reflection, this just means that each nodal value
is set equal to the closest point on the interface that propagates directly
to or from the node. Using this representation, we find that redundancy is
largely eliminated, and a greatly improved approximation of the swallowtail
is obtained (see Figure 8). Unfortunately, arrival times are often difficult
and expensive to evaluate in the variable index of refraction case or when re-
flections occur. Furthermore, even in a homogeneous medium, this approach
requires a more intricate search step since nodal values can only be updated
when a nearby tracked point travels directly towards the node (which rarely
occurs).

Of course, we are not limited to representations that minimize distance
or arrival times—a minimization based on some combination of distance and
direction of motion can also be carried out. A particularly interesting choice
arises when nodal values are set equal to the “Minimizing Point”

MP (x) = min
y∈Interface

γ|(x− y) · n̂⊥(y)|+ ||x− y||2 (1)

for γ > 0 since then a good agreement with the minimal arrival time repre-
sentation is found near the interface. Using this idea leads to the following
modification of the Closest Point Method:

The Arrival Time Method:
Initialize. For each point x: Set the tracked point TP (x) equal to the minimizing
point MP (x) on the initial surface Γ0 for the minimization in Eq. (1). Set n̂
equal to the normal at MP (x).

Repeat for all steps:
(1) Evolve the tracked point TP (x) according to the local dynamics

for a time ∆t: TP (x)t = cn̂.
(2) Extend the surface representation by replacing each tracked point TP (x)

by the point MP (x) on the updated surface Γ = {TP (x)|x ∈ Rn} that
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represented by this
The upper corner is

region.

The lower corner is

represented by this region.

Figure 7: (a) When a swallowtail is small, the nodal values over-represent
corners. (b) Because large regions are used to represent corners, only the
small shaded region is left to capture the end of the swallowtail. This small
region will contain few (or no) grid points after the swallowtail is first formed.

(a) Representation of a swallowtail. (b) Regional representation of the swallowtail.

minimizes Eq. (1). Replace each n̂ by the normal at the updated MP (x).
End.

As we shall see next, this simple approach gives a much more uniform rep-
resentation and naturally treats the prototype swallowtail problem.

3.2 Numerical Experiments

Consider an ellipse evolving inward with unit speed as is shown in Figure 5.
As discussed in the previous section, the Closest Point Method produces large
gaps in the interface. A much more uniform representation of the swallowtail
is derived using the Arrival Time Method (see, e.g., Figure 9). Over large
times, this improvement leads to dramatically superior results, as can be seen
by comparing Figures 6 and 10.

Of course, we also want an estimate of how closely each tracked point
approximates the true wavefront. Analytically, an O((∆x)3/∆t) error should
be produced over the length of the computation because time steps are carried
out exactly (to within roundoff) and a quadratic interpolation step is used. In
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Figure 8: Minimizing arrival times rather than distance gives a more uniform
representation of the interface
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Figure 9: (a) Using the Closest Point Method, the end of the swallowtail
is lost. (b) By minimizing first arrival times, a good representation of the
entire wavefront is obtained.

(a) Closest Point Method. (b) Arrival Time Method.
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Figure 10: Using an approximation to first arrival times, a uniform repre-
sentation is achieved. Here, a wavespeed equal to 1 was considered. Dis-
cretization step sizes of ∆x = 1/80 and ∆t = 1/40 were used throughout the
calculation.

(d) t = 0.450 (e) t = 0.600 (f) t = 0.750

(a) t = 0.000 (b) t = 0.150 (c) t = 0.300
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practice, we find that tracked points remain close to the true solution surface.
For example, in the test problem of Figure 10f a very small error (measured
as the L1-distance of the tracked points TP (x) from the true solution surface
Γ) was produced that declined rapidly with ∆x. See Table I.

∆x Error
1/20 1.4e-6
1/40 3.7e-7
1/80 1.5e-8

Table I. Errors for an initial ellipse, measured as L1-distance of tracked
points from exact solution surface.

We now direct our attention to localization methods for improving the
efficiency of DSE schemes.

3.3 Localization

In previous sections, the search step was carried out globally. Although
simple, this approach can be expensive because at each grid point, all other
tracked points must be searched for a new minimizing point, leading to O(n2)
operations per time step, where n is the total number of grid nodes.

Alternatively, a local search can be used over a radius R of each grid node
[10] to achieve an O(n) operation count per step. Notice that in this case we
must choose

R > c∆t (2)

because information about the interface should propagate more quickly than
the interface itself [10]. Of course, this is a necessary and not a sufficient
condition. In practice, larger values of R are often needed to treat interesting
problems involving swallowtails.

In our formulation, each grid node value represents some tracked point
on the interface. This fact allows us to design an algorithm that searches all
tracked points in a neighborhood of the interface rather than a few tracked
points in a neighborhood of each node. We proceed as follows:

1. Initialize the updated nodal values TP (x)new = MP (x) for each node
x.
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2. Evaluate

F (TP (x), p) = |(TP (x)− p) · n̂⊥(TP (x))|+ ||TP (x)− p||2 (3)

for each tracked point TP (x) and each node p which lies inside a
disc of radius r centered at the interface point TP (x). Whenever
F (TP (x), p) < F (TP (x)new, p) an update is made to the new nodal
values: TP (x)new = TP (x).

Notice that this approach has the advantage that all tracked point informa-
tion near the interface is instantaneously propagated globally away from the
interface, so the propagation speed requirement (2) no longer applies and r
can be selected independently of c and ∆t.

This localization naturally leads to some modifications of the Extension
Step. First, only nodes which are within a distance r of the interface should
be used for interpolations since only these nodes are updated during the
search. Also note that searching according to Equation (1) can cause neigh-
boring nodes to represent different wavefronts (see Figure 11b) which makes
interpolation impossible. Because the Closest Point Method does not exhibit
this shortcoming (see Figure 11c), we carry out the Extension Step twice in
the localized algorithm—once with a search that minimizes distance and once
using Equation (1). Whichever result minimizes expression (3) is used as the
updated value at each node.

We have found that this simple, fast approach gives excellent results in
a wide variety of problems. In particular, the examples in the next three
sections are carried out using this localization2.

4 Refraction

The Arrival Time Method described in the previous section applies to homo-
geneous media. In problems where the wavespeed is piecewise constant, the
direction of propagation will change as the wavefront moves from one mate-
rial to another. Specifically, the angle of refraction will be given by Snell’s

2We use a radius of four cells throughout. This is somewhat arbitrary: Other values
appear equally effective. For example, using a radius of just two cells a solution of the
swallowtail problem can be computed that essentially coincides with the global result
shown in Figure 10.
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Figure 11: (a) Before the search step. Consider 3 nodes x, y and z and
several neighboring tracked points: o (b) After the search step. If we search
according to Equation 1, the nodal value at x will belong to the second
wavefront c2 since |(x− TP (x)) · n̂⊥(TP (x))| & |(x− TP (y)) · n̂⊥(TP (y))|.
Neighboring values will belong to the first wavefront. Because TP (x) belongs
to a different wavefront than its neighbors, no interpolation will occur at x
and resolution may be lost. (c) After the search step. If we search according
to distance, an interpolation at node x is possible based on the tracked points
TP (x) and TP (z).
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Figure 12: Refraction is handled by applying Snell’s Law in the Evolution
Step. Here, the wavespeed is 1 in the upper region {(x, y) : y > 1/2 −
0.2 cos(2πx)} and 1/2 in the lower region. Discretization step sizes of ∆x =
1/80 and ∆t = 1/20 were used throughout the calculation.

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

Law

Sn(θ) = arcsin
(
cb
ca

sin(θ)
)

(4)

where θ is the angle of incidence of the ray and ca and cb are the wavespeeds
in the original and final media (see, e.g., [7]).

To extend the Arrival Time Method to this refractive case, we must take
Snell’s Law into account in the Evolution Step. The Extension Step of the
algorithm remains unchanged. Figure 12 gives a simple example of a re-
fracting wavefront treated using this approach. For the variable index of
refraction case, we proceed in a similar fashion, except now the Evolution
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Step is governed by the ray equations (see [7]),

d2X

dt2
= ∇X

(
n2

2

)

(5)

||Xt||2 = n(X)2 (6)

where X is the coordinate of the ray being traced (or in our language, the
coordinate of the tracked point) and n(X) = 1/c(X) is the variable index of
refraction.

Of course, physically, we expect that a reflected wave will also be produced
when a wavefront passes from one material to another. Fortunately, these
reflected components are straightforward to treat using methods discussed
in the next section.

5 Reflection

When a ray traveling in a medium encounters a boundary, part of the in-
cident ray is reflected back into the medium. Very often, the direction of
propagation of the reflected wave will be given by the Law of Reflection: the
angle of reflection equals the angle of incidence.

To extend the Arrival Time Method to the reflective case, we must take
the Law of Reflection into account in the Evolution Step. The Extension
Step of the algorithm remains unchanged. Figure 13 gives an interesting
example of a reflecting wavefront treated using this approach. Although
this simple method gives a very good representation of the interface, small
gaps occasionally form where wavefronts cross (see Figure 13f). These gaps
arise when too few grid points are used to represent complicated reflecting
wavefronts. See Figure 14.

Fortunately, this problem can usually be overcome simply by refining the
mesh (see Figure 16a). In more complicated problems, two tracked points
may be stored at each node—one for parts of the wavefront that have reflected
an even number of times, the other for parts that have reflected an odd
number of times. As shown in Figure 15, this approach gives a more uniform
representation of reflected kinks and an improved treatment of complicated
wavefronts.

We now direct our attention to another important property of wave prop-
agation: the intensity.
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Figure 13: Reflections are handled by applying the Law of Reflection in the
Evolution Step. Here, a wavespeed equal to 1 was considered. Discretization
step sizes of ∆x = 1/80 and ∆t = 1/20 were used throughout the calculation.

(d) t = 0.15 (e) t = 0.20 (f) t = 0.25

(a) t = 0.00 (b) t = 0.05 (c) t = 0.10
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Figure 14: (a) When a kink reflects from a boundary, a rather complicated
wavefront develops. (b) There are too few grid points to represent dashed
segments, so gaps form in the interface.

(a) Reflected wavefront. (b) For each node, a point on
the interface is stored.

Figure 15: If even (a) and odd (b) reflections are represented separately, then
a more uniform treatment of the wavefront is obtained.

(a) Even reflections. (b) Odd reflections.
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Figure 16: Small gaps that form may be eliminated by (a) refining the mesh
(here we have taken ∆x = 1/115) or (b) treating odd and even reflections
separately (here ∆x = 1/80).

(a) t = 0.25 (b) t = 0.25

6 Intensity

Previous sections evolved wavefronts by propagating out both position and
normal values. In this section, we describe how to treat intensity by retaining
other attributes of the wavefront, such as wavefront curvature. Numerical
experiments are also carried out to validate our approach.

6.1 The Method

To develop a method for evolving intensity values, we make use of a simple
observation: Away from degenerate cases, the intensity of a ray at time t
is given by the intensity at an earlier time, t0, multiplied by the expansion
ratio3, ξ(t0, t). As shown in Figure 17, the two dimensional expansion ratio
for a homogeneous medium is just the initial radius of curvature divided by
the final radius of curvature. I.e.,

ξ(t0, t) =
ρ(t0)

ρ(t)
. (7)

3The expansion ratio is a measure of the expansion of the cross-section of a tube of
rays. See Figure 17 for a derivation of the expansion ratio in two dimensions and reference
[7] for a derivation in the general case.
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Wavefront at time t
Wavefront at time t0

Center of curvature e

Figure 17: In two dimensions, the expansion ratio is the initial length of a
wavefront element divided by the final length. For a homogeneous medium,
ξ(t0, t) =

dL(t0)
dL(t) = θρ(t0)

θρ(t) = ρ(t0)
ρ(t) .

In three dimensions, it is easily shown [7] that the expansion ratio for a
homogeneous medium becomes

ξ(t0, t) =
ρ1(t0)ρ2(t0)

ρ1(t)ρ2(t)
. (8)

where ρ1 and ρ2 are the principal curvatures of the wavefront surface.
Thus, intensity values may be propagated along a ray using just the

initial intensity, time and principal curvature values. For example, in two
dimensions the intensity is given by

I(t) = I0

(
ρ(t0)

ρ(t0) + c(t− t0)

)

(9)

in terms of these quantities. Notice that this simple analytical approach ap-
plies even when the intensity is infinite (e.g., at a focus) at some intermediate
time. Indeed, even degenerate cases (i.e., the radius of curvature is initially
zero) may be treated analytically. See [7] for further details.

When a wavefront is reflected or refracted, however, curvature and in-
tensity values can change and Equation (9) cannot be used. Fortunately,
updated values for these quantities are easily calculated. After reflection,
intensity is unchanged and the curvature of a 2D wavefront is given by

κreflected = κincident −
2

cos(θ)
κboundary (10)

where κincident is the curvature of the incident wavefront, θ is the angle of inci-
dence and κboundary is the curvature of the reflective surface. After refraction,
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the curvature of a 2D wavefront is given by

κrefracted =
Sn′(θ)

√
1 + (1− ( cbca )

2) tan2(θ)
κincident +

Sn′(θ)− 1
√
1− ( cbca sin(θ))

2
κboundary

(11)
where Sn′(θ) is the derivative of Snell’s Law (4), κboundary is the curvature of
the boundary between media and ca and cb are the propagation speeds in the
original and final media. Updated intensity values after refraction are given
by

Irefracted
Iincident

=
cos(θ)

cos(Sn(θ))
(12)

Thus, we treat intensity by storing curvature and intensity values at an
initial time t0 (which is also stored). These stored values are updated (using
Equations (10-12)) whenever a reflection or refraction occurs, to give an
explicit formula (9) for intensity.

We now use this approach to evolve the intensity of a propagating, two
dimensional wavefront and compare our results to a front tracking method.

6.2 Numerical Experiments

Consider the evolution of the initially circular wavefront given in Figure 18a.
Using the methods of the previous section, intensity values are determined
for each tracked point after a variety of reflections and refractions. A color
visualization of these intensity values is given in Figure 18. Plotting the
intensity as a function of arclength for the lower curve at t = 0.75 gives
the results in Figure 19. These intensity values agree well with the exact
solution since they have less than a 2 percent relative error (as measured
in the maximum norm) when compared to a well resolved front tracking
calculation.

In all our calculations, intensity and curvature values for new (i.e., inter-
polated) points are derived by linearly interpolating the values of neighbor-
ing points at the current time. Higher order interpolations may be preferred
when very accurate results are sought.
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Figure 18: Intensity is calculated by propagating out curvature values. Here,
the wavespeed is 1 in the middle region {(x, y) : 0.2 + 0.1 cos(2πx) ≤ y <
0.5− 0.1 cos(2πx)} and 1/2 in the upper region. Discretization step sizes of
∆x = 1/80 and ∆t = 1/20 were used throughout the calculation.

(d) t = 0.45 (e) t = 0.60 (f) t = 0.75

(a) t = 0.0 (b) t = 0.15 (c) t = 0.30
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Figure 19: Intensity as a function of arclength for the lower curve of Fig-
ure 18f.
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7 Curvature-Dependent Motions

In previous sections, we described methods for evolving interfaces according
to position-dependent velocities. However, asymptotic models for physical
processes often yield equations of motion for a surface moving with a velocity
that is a function of its local geometry, i.e., a function of local normal, curva-
ture and derivatives of these quantities. Toward this end, we now consider an
extension of the Closest Point method to more general curvature-dependent
motions and validate our approach with numerical experiments.

7.1 The Method

A particularly fundamental motion arises when the normal velocity equals
the mean curvature of the surface. For this important case, a simple DSE
scheme can be constructed. Moreover, this scheme applies to motion by mean
curvature for objects of any codimension. To illustrate this, we will develop
the model for the arbitrary codimension case, and apply it to a curve in three
dimensions with a velocity equal to its vector curvature κn̂.

We begin by noting that the vector mean curvature for a surface of arbi-
trary codimension is given by

κn̂ = −∆∇
(
d2

2

)

(13)

where κ is the local mean curvature and d is the distance to the surface (see,
e.g., [1]). Taking into account that

d∇d = x− CP (x)

where CP (x) is the closest point to x on the surface we obtain a very simple
expression for vector mean curvature:

κn̂ = −∆(x − CP (x)) = ∆CP (x).

Thus, motion by mean curvature for surfaces of arbitrary codimension can
be achieved by replacing the Evolution Step of the Closest Point Method by

TP (x)t = ∆TP (x)|TP (x).
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Other curvature dependent velocities are possible by replacing the Evolution
Step by

TP (x)t = F (∆TP (x)|TP (x) · n̂) n̂
since κ = ∆CP (x)|CP (x) · n̂. Of course, it is crucial to evaluate the Laplacian
term at the closest point since Equation (13) is only valid at the interface.

We now validate our algorithm with some numerical experiments.

7.2 Numerical Experiments

For our final example, consider the curvature motion of a periodic spiral in
three dimensions,

x = 0.4 sin(2πs),

y = 0.4 cos(2πs),

z = s.

Here, it is easily shown that the exact solution is also a spiral, but with a
radius that shrinks according to the ordinary differential equation,

ṙ = − r

r2 + 1
4π2

.

Using the algorithm of the previous section, the maximum error in the
position of the filament at time t = 0.1 was computed for several ∆x (∆t was
taken to be 1

4(∆x)2). The results for a number of experiments are reported
in Table II, below.

∆x Error Conv. Rate
1/10 0.00688 -
1/20 0.00159 2.1
1/30 0.00071 2.0

Table II. Errors for the curvature motion of a filament.

These results are suggestive of an approximately second order error in the
position of the front.

In all calculations, the standard second order finite difference approxi-
mation of the Laplacian was used with forward Euler time stepping. In-
terpolated values of the Laplacian were derived using linear interpolation.
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Figure 20: The curvature motion of a filament, vn = κn̂.

Initial Filament After a time t=.1

Extension Steps were carried out by fitting a spline to the filament and re-
initializing the closest point representation at each step.

8 Summary and Topics for Future Research

In this work, we have considered a class of Dynamic Surface Extension meth-
ods based on an approximation of first arrival times instead of closest points.
Our approach uses a spatially distributed representation of the surface that
maintains a uniform and balanced resolution during the formation of compli-
cated self-intersecting fronts (such as swallowtails) which are not well treated
by the original Closest Point Method. Simple extensions for treating refrac-
tion, reflection and intensity are also provided and validated with numerical
experiments. Finally, a surprisingly simple generalization of our method is
given for interesting geometric motions, such as mean curvature flow. As with
other DSE schemes our methods automatically treat points, filaments and
surfaces of arbitrary codimension, which we have illustrated with curvature
motion of a filament in three dimensions.

A variety of interesting topics for future research are still open. For exam-
ple, notice that our approach requires a thresholding step to determine when
interpolations occur (see Section 2.2). As we saw throughout the paper, it is
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often adequate to base this thresholding on the position and normal values
of tracked points. Of course, no single threshold is adequate for all problems.
It would be interesting to investigate robust decisions based on propagating
out other quantities. For example, one might consider propagating initial
position and normal values along each ray (cf. [12]), since interpolations can
only occur when these quantities are approximately equal.

Other potential areas for future research include studies of the method’s
three dimensional performance (cf. [10]), especially for optical intensity cal-
culations. It would also be very interesting to extend the method to include
the effects of geometrical diffraction (cf. [7]), i.e. the bending of the wave-
front as it passes by an obstacle.

There is also a great deal to explore in terms of using this type of rep-
resentation to move objects of more complex topology and geometry, such
as surfaces with boundaries (or curves with endpoints), objects of composite
topology (such as a filament attached to a sheet), and surfaces or curves with
triple point junctions.

Another major direction would be to couple these self-intersecting surface
representations to physical processes occuring off the interface. For example,
it would be interesting to treat the case of multiply intersecting shock wave
fronts coupled to surrounding gas dynamics.

Finally, further work in the area of curvature dependent motions is also
possible. Computationally, the construction of fast extension methods would
be of great practical importance. Theoretically, it would be interesting to
study the convergence properties of the method. It would be particularly
interesting to determine if surfaces fatten (or develop interiors) when mergers
occur. See [2] for a detailed discussion on the “fattening phenomenon.”
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