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Abstract

A physical interface can often be modeled as a surface that moves
with a velocity determined by the local geometry. Accordingly, there
is great interest in algorithms that generate such geometric interface
motion. In this paper we unify and generalize two simple algorithms
for constant and mean curvature based interface motion: the classi-
cal Huygens’ principle, and diffusion-generated motion. We show that
resulting generalization can be viewed both geometrically as a type
of Huygens’ principle, and algebraically as a convolution generated
motion. Using the geometric-algebraic duality from the unification,
we construct specific convolution generated motion algorithms for a
common class of anisotropic, curvature-dependent motion laws. We
validate these algorithms with numerical experiments, and show that
they can be implemented accurately and efficiently with adaptive res-
olution and fast Fourier transform techniques.
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1 Introduction

There are many natural phenomena in which fairly sharp interfaces form and
propagate. Notable examples include the growth of crystalline materials,
the evolution of detonation fronts in explosive materials, and the waves of
excitation that occur in heart and neural tissue.

Asymptotic models for these processes often yield equations of motion
for a surface moving with a normal velocity that is a function of the local
surface geometry, i.e. a function of the local normal direction, curvature, and
higher space and time derivatives of these quantities. For example, a variety
of such models are discussed in [28, 18], and a particularly accurate family of
geometric models for detonation-shock front dynamics is described in [29].

Given such models, it becomes important to develop algorithms which can
realize geometric surface motions in simple, efficient and accurate ways, and
which are amenable to mathematical analysis. Designing suitable algorithms
is complicated by the fact that in many problems the interfaces can merge or
break up, form triple point junctions or more complicated interface networks.
It is particularly challenging to find algorithms that retain their simplicity,
yet are robust enough to capture these topological features.

In this present work, we outline a simple and robust method that can
achieve a wide variety of geometric surface motions. We start from two
existing algorithms for the special cases of constant and mean curvature
motion. We then unify and generalize these in order to achieve a larger class
of velocity laws while retaining the strengths of the original methods.

The parent methods are the classical geometric Huygens’ construction for
moving a surface normal to itself with a constant velocity, and the diffusion-
generated motion algorithm for moving a surface by mean curvature, de-
scribed in detail in Section 3. The strength of Huygens’ principle is its geo-
metric formulation, which is easy to visualize and analyze. The strength of
diffusion-generated motion is its exceptional computational simplicity. The
unification of these disparate methods is itself mathematically interesting,
since it highlights aspects of each that are otherwise not obvious. Using the
insights thus gained, and the flexibility of the general form, we construct spe-
cific methods for a common class of anisotropic, curvature-dependent motion
laws. We also show how to implement these algorithms in a computationally
efficient and accurate manner. Numerical experiments are used to validate
the performance of these new methods.
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The outline of the paper follows. In Section 2, we review the relevant
previous and related work. In Section 3, we review the standard geomet-
ric Huygens’ principle, and reformulate it in algebraic form. We also re-
view diffusion-generated motion by mean curvature, and reformulate it in
geometric form. Section 4 unifies and generalizes the forms encountered in
these two examples. In Section 5, we construct specific convolution gener-
ated motion algorithms for anisotropic curvature motion, and validate the
resulting algorithm with numerical experiments. In Section 6, we construct
algorithms for curvature-independent motions, and validate these numeri-
cally. Section 7 combines these methods to obtain more general anisotropic,
curvature-dependent motions, and validates the proposed algorithm with nu-
merical experiments. Section 8 summarizes our results and outlines current
research. Finally, Appendix A concludes with a description of the fast dis-
cretization methods that were used throughout the paper.

2 Background

The developments in this present work were motivated by diffusion-generated
motion by mean curvature, so we will review the history of this method, its
relationship to other methods for surface motion, and its relation to other
classes of mathematical models.

Motion by mean curvature is one of the fundamental models for surface
motion, in which the surface normal velocity is simply proportional to the
local mean curvature, v,, = bk. The original development came about while
trying to formulate a level set based method for motion by mean curvature
in the presence of triple point junctions.

The level set method of Osher and Sethian [17] was introduced to compute
(and define) arbitrary curvature-dependent surface motions, including topo-
logical changes. This provides a PDE based method for motion by mean cur-
vature, including the pinch-offs which can occur in three dimensions. Stan-
dard numerical PDE methods apply to accurately discretize the equations of
motion. However, the original level set method does not apply to the motion
of triple point junctions. The level set method was ultimately extended to
handle the motion of multiple junctions [15, 30], but the modifications were
non-trivial.
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In the course of investigating the multiple junction problem, Merriman,
Bence and Osher [14, 15] developed the surprisingly simple “diffusion-generated
motion by mean curvature” algorithm, which gave mean curvature motion
without computing curvature. It also automatically captured topological
change and had a direct extension to motion of triple point junctions and
arbitrary networks of surfaces. This algorithm is described in detail in Sec-
tion 3.2, but it essentially consists of moving a set boundary by alternately
“diffusing” the set—i.e. applying the linear diffusion evolution equation to
the set’s characteristic function for a short time—and then recovering a new
set via a “sharpening” step in which values of the diffused characteristic
function are reset to 0 or 1, whichever is closer. It is essential to apply
the diffusion for only a short time, since only the initial boundary motion
generated by the diffusion is proportional to the mean curvature.

This procedure of alternately diffusing and sharpening is reminiscent of
an operator splitting approximation of the reaction-diffusion, phase-field or
Ginzburg-Landau equation type models [4, 3, 8, 6, 21, 20] for motion by
mean curvature. In these PDE models, a reaction front develops, separating
large regions of constant state. In the asymptotic limit of a strong reaction
and weak diffusion, the reaction front moves by mean curvature. While this
observation was part of the conceptual motivation for diffusion-generated
motion, the ultimate algorithms are quite different. The phase-field models
introduce an artificial small length scale—the width of the reaction zone—
which, for numerical work, must be resolved by a computational grid or all
accuracy is lost for the computed interface motion. This was proven rigor-
ously in [15]. In contrast, diffusion-generated motion has no such artificial
small scales. For numerical work, the computational grid need only resolve
the natural length scales in the problem, i.e. the curvatures of the evolving
surface. Thus diffusion-generated motion has in effect passed to the asymp-
totic limit of the phase-field class of models, obtaining a simplified and more
accurate evolution scheme in the process.

Shortly after the introduction of diffusion-generated motion, there ap-
peared a variety of rigorous convergence proofs for the basic version of the
algorithm [7, 1, 13]. The more recent convergence proof of Ishii, Pires and
Souganidis [11] covers their generalizations of the original algorithm, which
includes the specific algorithms for anisotropic curvature motions we con-
struct in Section 5.

The original numerical implementation of the method was based on naive
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discretizations of the diffusion equation on a uniform grid, which gave crude
but illustrative results. Ruuth [25, 22, 23] introduced discretizations based on
fast Fourier transforms on adaptively refined grids. This approach provides
enough accuracy and efficiency to make diffusion-generated motion compet-
itive with more traditional surface evolution discretizations. Moreover, the
discretization extends unchanged to the motion of multiple junctions, while
other approaches tend to require more complicated implementations to ac-
commodate such features.

In the original presentation of diffusion-generated motion [14], it was
pointed out that the diffusive evolution is equivalent to convolution with a
Gaussian kernel, and that convolution with any other similarly scaled spher-
ically symmetric kernel would also generate motion by mean curvature. It
was also pointed out that this provided a means of generalization, and that
the use of non-spherically symmetric convolution kernels could be used to
generate anisotropic motions. Further, it was observed that the standard
geometric Huygens’ principle described in Section 3 also can be written in
convolutional form, and thus is subject to the same generalization. Con-
versely the diffusion-generated motion algorithm can be viewed as a certain
geometric Huygens’ principle construction. It is these original observations
that are reiterated as our motivation in Section 3. The purpose of this present
work is to fully develop these early observations, and also unite them with
the advanced computational methods of Ruuth in order to produce efficient
computational schemes for a more general class of anisotropic, curvature-
dependent motions.

Independently of the work on diffusion-generated motion, Gravner and
Griffeath [9] developed and studied a class of set evolution algorithms of a
somewhat similar form, but with an entirely different perspective and goals.
They were looking at ways to determine the limiting shapes produced by
cellular automata models for excitable media. Their “threshold growth dy-
namics” was intended to be a model that captured the smooth, or long wave-
length, features of cellular automata evolution rules. Motivated by extensive
experiments with cellular automata, they considered an idealized problem of
evolving a set by positioning some other shape, scaled to be small, so that
the fraction of its volume remaining inside the main set exceeds some thresh-
old, and then taking the set of all such shape centers as the updated set. In
our language, we consider this to be the basic form (constant threshold \)
of the generalized Huygens’ principle for anisotropic constant motion—i.e.
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motion of the form v, = a(n)—as discussed in Section 4. Their goal was to
prove that such discrete evolution rules lead to a certain asymptotic limiting
shape for the evolving set as time (the number of iterations) goes to infinity.
They accomplish this in full rigor and generality, both on a continuum and
a lattice.

In continuum terms, and from the viewpoint of convolution generated
motion as developed in Section 4, we would say they were analyzing a discrete
approximation to a certain anisotropic velocity law v, = a(n). This velocity
law, in turn, could be determined from the general formulas for convolution
generated motion velocities recently obtained in [11]. As an aside, note that
at this continuum level it is a classical observation about crystal growth
(dating back to Gross in 1908) that such anisotropic velocity laws result in
well-described limiting shapes as ¢ goes to infinity. However, rigorous proofs
of this did not appear until recently. The work of Gravner and Griffeath
contains one such proof, though they do not draw this connection explicitly.
A simple direct proof for the standard continuum formulation, as well as
more detailed discussion and references, are contained in a recent work of
Osher and Merriman [16].

Gravner and Griffeath were primarily concerned with the long time limit
of their set evolution process. In diffusion-generated motion and its general-
izations studied here, the focus is on the point that the entire motion con-
verges in a well behaved fashion to a continuous evolution law for a surface.
Also, the evolutions Gravner and Griffeath consider are essentially approx-
imations to anisotropic constant motion, as noted, not to mean curvature
or other curvature-dependent motions. To generate curvature-dependent
motions requires the use of a different type of scaling for the convolution
kernel/shape. These are the respects in which their algorithms differ from
diffusion-generated motion and its suggested generalizations. On the other
hand, their method is identical to the generalizations of diffusion-generated
motion independently suggested for the case of anisotropic constant motion—
particularly since they also suggest using arbitrary convolution kernels to
replace the geometric shapes. However, these generalizations actually differ
from the one we employ for such motions in Section 6, because we make use
of normal-dependent thresholds, A = A(n), rather than the simpler constant
ones. Constant thresholds are greatly restricted in the class of anisotropic ve-
locities they can achieve, as demonstrated by the example we give in Section
6 as well as the general velocity formulas given in [11].
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The “spatially continuous automata” of MaclLennan [12] is another inde-
pendent development that is similar to diffusion generated motion. It also
arises from cellular automata, again as a method intended to capture the
smoother aspects of automata rules. MacLennan achieves this simply by tak-
ing continuous versions of the spatially discrete aspects of cellular automata
evolution. The resulting method consists of taking a continuous initial data
function, evolving for a discrete timestep by convolving it with a continuous
convolution kernel, and then applying a continuous pointwise sharpening
step that tends to undo some of the blurring of the convolution step. This
procedure is quite similar to diffusion-generated motion (and the general con-
volution generated motion we present in Section 4), except for one minor but
crucial distinction. The simple asymptotics that yield motion by mean cur-
vature in diffusion-generated motion come about precisely because the initial
data is the discontinuous characteristic function, and because the sharpen-
ing step is discontinuous, replacing the blurred out characteristic function by
a new discontinuous characteristic function. Replacing these by continuous
analogues destroys simple sharp interface motions in the first few timesteps.
Thus, while the spatially continuous automata do produce an interesting and
varied class of evolutions, they do not tend to yield well behaved limiting in-
terface motions amenable to asymptotic and rigorous analysis. In this regard,
even though they capture the smooth features of cellular automata, they still
retain too much of the original complexity.

The work of MaclLennan, and of Gravner and Griffeath, illustrates an
extremely interesting connection between the type of general convolution
generated motions outlined in this present work, and cellular automata. It
seems that convolution generated motion provides a natural intermediate
mathematical model between automata and PDEs. On the one hand, it
captures only the long wavelength limit of the automata, in the form of in-
terface evolutions. On the other hand, the flexibility in choice of kernels and
thresholds can be used to create motions more simply or more generally than
PDE based surface evolution models such as level set method or phase-field
methods. Moreover, this connection with cellular automata is still largely
unexplored, since the curvature-dependent motions provided by diffusion-
generated motion were not considered in the work of Gravner and Griffeath,
much less other possible generalizations. In ongoing research, we are develop-
ing convolution generated motion algorithms for capturing a variety of effects
observed in cellular automata models. It appears the convolution generated
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formalism will lend itself to more efficient computation, as well as simplify
the analysis needed to derive an algorithm that generates a desired behavior.

Based on the original diffusion-generated motion algorithm [14] and on
the threshold growth dynamics method of Gravner and Griffeath [9], Ishii
[10] and Ishii, Pires and Souganidis [11] have developed and rigorously ana-
lyzed a class of general methods similar to the ones considered in Section 4.
Their most recent work is parallel to, but complementary to, the content of
this present paper. For their general class of convolution generated motions,
they determine explicit formulas for the limiting surface evolution velocity
in terms of moments of the convolution kernels. They also give rigorous
proofs that the convolution generated motions converge to these continuous
surface evolutions as the timestep goes to zero. In contrast, our goal here is
to link the generalized convolution generated motions to generalized versions
of Huygens’ principle, and use the resulting duality to develop specific con-
volution kernels for a desirable class of curvature-dependent motion laws. In
addition, we want to develop and validate the associated discretization meth-
ods needed to effectively compute surface evolutions with these schemes. In
this context, the work of Ishii, Pires and Souganidis provides a rigorous proof
of convergence for the specific convolution generated motions constructed in
Section 5, but is not general enough to apply to the constructions in Section
6. Their analysis also implies the class they consider cannot generate certain
anisotropic curvature motions, which justifies our use of more general forms.

As can be seen from this brief overview and history, convolution generated
motion has attracted considerable theoretical and computational interest,
and has interesting relations and contrast with other methods for surface
evolution. It has arisen independently in varied fields of research, and it
provides an interesting bridge between cellular automata models and PDE
models for systems with dynamic interfaces. We anticipate a great amount of
future development as these connections and applications are explored more
thoroughly.

3 Motivating Examples

Our generalizations are motivated by the desire to unify the standard ge-
ometric Huygens’ principle for constant normal motion with the algebraic
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method of diffusion-generated motion by mean curvature. Thus we begin by
reviewing these procedures and their interesting properties. In preparation
for generalization, we also show how each can be expressed in a form similar
to that of the other.

3.1 The Standard Huygens’ Principle

The standard Huygens’ principle is a geometric technique for moving a curve
with a constant normal velocity, ¢. The principle states that the evolved
curve at a time At can be obtained from the initial curve by the following
geometric construction (see Figure 1):

Draw circles of radius r = ¢At which are centered on the initial
curve. The forward envelope of these circles is the curve at time

t = At.

For our purposes, it is more convenient to reformulate this as (see Fig-
ure 2):

Draw circles of radius r = ¢At, centered so they are entirely on
one side of the curve and tangent to it. The locus of the circle
centers forms the new curve position after a time ¢t = At.

As the first step towards generalization, this geometric construction can
be translated into an algebraic form. Represent curves as the boundaries of
regions, and in turn represent regions by their characteristic functions, i.e.
functions that are 1 on the region, 0 off the region. Suppose the original
region has characteristic function y. Select a cylindrically symmetric kernel,
K, supported on a disc of radius ¢At centered at the origin (e.g., K could
be the characteristic function of this disc). Convolve y with K. Then the
updated region is defined as

{&:y* K(Z) >0},

and the updated curve is the boundary of this region.

Thus, the standard geometric Huygens’ principle for motion with constant
velocity is equivalent to the algebraic procedure of convolving the characteris-
tic function for the original region with an appropriate kernel, and obtaining
a new characteristic function from this via thresholding.



3 MOTIVATING EXAMPLES

Figure 2: Huygens’ principle (reposed).
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3.2 Diffusion-Generated Motion by Mean Curvature

Diffusion-generated motion [14, 15] is a particularly simple convolution based
algorithm for moving an interface by mean curvature. If the initial surface
bounds a region with characteristic function y, the updated surface at a time
At is the boundary of the updated region

{:Z;’:X*K(:I;’) > %} (1)

where K is a Gaussian of width v/ At,

1 1
[(—’:[(At—’z_ 2
=120 = g e (- )

“Diffusion-generated” refers to the fact that convolution with the Gaussian
kernel can be realized by solving the diffusion equation for a time At, with y
as initial data. Thus this procedure can be described informally as diffusing
the set for a short time, and then thresholding at the I level to obtain a
new set. It is intuitively clear that such a diffusion will cause a curvature-
dependent blurring of the set boundary, and a formal analysis of the diffusion
equation [14, 15] shows this should result in precisely motion by mean cur-
vature.

An interesting variety of rigorous proofs have been given to show this
simple algorithm converges to motion by mean curvature as the time step
goes to zero [7, 1, 13, 11].

This algorithm has several remarkable properties: Motion by mean cur-
vature is obtained in any number of dimensions without ever directly com-
puting the mean curvature. Topological mergers such as pinch off, which
occur in higher dimensions, are captured with no special algorithmic proce-
dures. Note also that motion by mean curvature is a nonlinear evolution, yet
the diffusive evolution is entirely linear, with the only nonlinear part of the
algorithm being the final, trivial, thresholding step.

Perhaps most remarkable, this procedure has a direct extension to the mo-
tion of multiple junctions. Let the intersecting surfaces partition the domain
up into regions with characteristic functions yq, x3,.-., xny. Note > x; = 1
everywhere, reflecting the partition. We independently diffuse each region—
i.e. convolve y; with the Gaussian—to obtain smoothed out characteristic
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functions y,;(At). Note that these still sum to one, by the linearity of the
convolution: > v;(At) = > K xy; = Ky y; = K1 = 1. Thus the
smoothed out characteristic functions still partition the domain into “fuzzy”
sets. In order to obtain a partition into geometric sets, we simply define
set ¢ to be the set on which y,;(At) is greater than all the other smoothed
out characteristic functions. In the case of two regions, this reduces to the
standard algorithm. This symmetrical y comparison produces symmetrical
triple point junctions, but arbitrary desired junction angles can be obtained
by using a nonsymetrical comparison, as described in [15, 13, 24]. There are
no rigorous results concerning this algorithm for multiple junctions, but the
numerical experiments in [23, 25, 24] demonstrate its convergence.

Volume preserving motion by mean curvature [5, 19], i.e. v, = k—k where
k is the surface average of the mean curvature, is another interesting flow
that is easily approximated by diffusion-based methods. Such motions are
realized by selecting the level that encloses the same volume as the original
set, instead of the 1 level [26]. Convergence of this procedure has been
demonstrated numerically, but not proven analytically.

Any positive, radially symmetric kernel may be used in place of the Gaus-
sian to obtain a convolution generated mean curvature motion, as was pointed
out in [14] and proven rigorously in [10]. For example, in two dimensions we
can take K to be the (normalized) characteristic function for a disc of radius
r, centered at the origin,

1

K(:I;’):{ mz i fF < (2)

0 otherwise.

where r ~ \/At.

Diffusion-generated motion by mean curvature was conceived of in its con-
volution form, in connection with solving reaction-diffusion equations. But
just as the standard geometric Huygens’ principle had an algebraic formula-
tion similar to that of diffusion-generated motion, so does diffusion-generated
motion have a geometric formulation similar to that of the standard Huygens’
principle [14].

Geometrically, the version of the algorithm based on the disc kernel (2)
can be described as positioning the discs so that exactly half their area lies
inside the curve to be evolved, and then taking the locus of all disc centers
as the new curve, as illustrated in Figure 3. We see this is just a slight
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updated curve

Figure 3: Huygens’ principle for a curvature-dependent motion.

modification of the standard Huygens’ principle shown in Figure 2, yet it
yields a qualitatively different type of motion.

The geometric Huygens’ principle for mean curvature motion is not as
obvious as that for constant motion, so let us briefly note why it works.
It is clear from Figure 3 that the most curved portions of the interface are
displaced the most by this process, so that it induces some form of curvature-
dependent motion. A simple geometric analysis (see Figure 4) shows that
if the local radius of curvature of the curve is R, and we position a disc of
radius r < R so that it is cut exactly in half (by area) by the curve, then
the disc center is displaced normal to the curve by a distance d ~ %. We
would like this displacement to represent one timestep of motion by mean

curvature, so we want d = v,At, with v, ~ £ = 5. This will indeed be

the case as long as r ~ v/Al. Note this also explains why the Huygens’
principle for mean curvature uses discs of radius r ~ /At, while that for
constant motion uses discs of radius r ~ At¢. (This distinction has practical
importance for numerical implementations, since the kernels for constant
motion have smaller supports and so require more spatial resolution than
those for curvature motion.)
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Figure 4: The geometry of the Huygens’ principle for motion by mean cur-
vature.

4 Generalized Huygens’ Principles

We have seen that two basic surface motion laws—motion by a constant and
motion by mean curvature—can be formulated in terms of both geometric
and algebraic Huygens’ principles, with the algebraic form based on convo-
lutions. Using these examples as inspiration and motivation, we want to
generalize Huygens’ principle to a form that can represent a large class of
surface motion laws.

4.1 Algebraic Generalization

We will first generalize Huygens’ principle in its algebraic form. The algebraic
form is preferred because it leads to a larger class of generalizations, and be-
cause its expression in terms of convolutions is better suited to mathematical
analysis and numerical computation.

Two natural generalizations are:

1. Allow a general threshold, A, in {#: v * K(Z) > A}.
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This provides a continuum of Huygens’ principles parameterized by
A, with A = 0 corresponding to the standard Huygens’ principle, and
A= % corresponding to motion by mean curvature. In general, A
can also be allowed to depend on other quantities. For example, a
variety of v, = a + bk diffusion-generated motions can be obtained
with A = 1 + eV/At [11, 13, 24], so A = A(At) is a useful form. More
generally, in Section 6 we show it is useful and practical to select A
locally as a function of the normal direction defined by the level sets of

K *x, A= A(n).

2. Allow different convolution kernel functions!, K.
The method formally allows arbitrary kernel functions, and asymmetri-
cal kernels can be used to produce anisotropic motion laws, as originally
suggested in [14]. For numerical work, we construct kernels which are
simple, easy to compute with and can produce general motion laws.

Note that in the examples of motion by a constant and motion by mean
curvature, the kernels also had a radius that scaled like At and V/At, respec-
tively. We do not consider generalizing this scaling relationship, since this
is fixed by requiring that each application of the convolution generate one
“timestep” of some motion law.

More specifically, the generalized method consists of selecting a fixed
kernel K(Z), and then scaling it down in a mass preserving way to have a
radius r < 1, i.e. K(Z/r)/r¢in d dimensions. We convolve this scaled kernel
with y to generate one step of the motion, and after thresholding by A the
set boundary will be displaced by an amount that is some function of r, s(r).
If we demand that in the limit of small r this displacement be one timestep
of a limiting motion law, s(r) = v, At, the relation between r and At is
fixed. Thus the r—At relationship is just an artifact of our definition of time
evolution, and not suitable for independent generalization.

4.2 Geometric Generalization

These generalized algebraic Huygens’ principles have associated geometric
formulations. To translate back to geometric language, we need to give a

'Without loss of generality, we shall assume that the kernel has been normalized to
satisfy [ K(Z)dz = 1.
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geometric description of the boundary of the set {xy « K > A}, i.e. the
points @ where y * K(#) = A. Note that we can visualize computing the
value of y * K at a point Z by rigidly translating the graph of K so that
the origin point is located at #, and then computing the portion of the mass
of this shifted K that is contained in the set represented by y. Thus these
boundary points are the location of the origin points when the graph of K
is translated so that exactly the fraction A of its mass is enclosed in the set.
The geometrization of the principle is complete if we restrict the kernel K
to be the (normalized) characteristic function of some geometric shape, since
then we are translating this shape so that a fraction of its area is contained
inside the set. In this case, the convolution based procedure can be stated
entirely in geometric terms as follows:

Select an arbitrary shape (generalizing the disc of the standard
principle) and an “origin point” for the shape (generalizing the
disc center), which can be any point inside or outside the shape.
Allow the shape and its associated origin to be moved in the plane
only by rigid translation (not rotations). Given an initial curve,
everywhere possible position the shape so that a fraction A of its
total area is enclosed in by the curve. Then the updated curve is
the locus of all the corresponding origin points.

Thus we see that in geometric terms the generalization of Huygens’ prin-
ciples corresponds to using shapes other than discs, taking the locus of desig-
nated points other than the disc centers, and positioning the discs fractionally
outside the curve, rather than entirely outside or half in and half out. The
use of general convolution kernels gives us a further extension that can be
thought of as using “fuzzy” shapes instead of geometric shapes. This shows
why the algebraic formulation lends itself to generalizations that would not
be geometrically obvious.

It is also interesting to note that there are actually several different types
of geometric Huygens’ principles, depending on the dimension of the “shape”,
i.e., the dimension of the support of the kernel K. If K is a unit mass uni-
formly distributed on a two dimensional set, we have the Huygens’ principles
based on positioning this shape with its area partially enclosed by the curve,
as just described. But, if instead K is a unit mass distributed uniformly
(with respect to arc length) on a one dimensional curve—e.g. a circle—then
we get a principle based on positioning this curve so that a fraction A of its
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total arc length is enclosed by the curve being updated. Finally, if K is a
unit mass distributed uniformly on a finite set of N points, we get principles
based on positioning the points so that some rational fraction A = % of them
lie inside the curve being evolved. In all cases, once the geometric object is
positioned with a fraction A of its measure enclosed by the curve, the locus
of corresponding origin points define the updated curve.

These Huygens’ principles based on positioning lower dimensional objects
are too singular for convenient numerical computation (since K is a singular
distribution), but they can be easy to treat analytically, and thus provide a
good source of exactly solvable examples.

4.3 Obtainable Motion Laws

It is natural to ask what class of motion laws can be obtained by these
generalized Huygens’ principles. This question has been posed and answered
(independently of this present work) in the recent and comprehensive work
of Ishii, Pires and Souganidis [11] for convolution generated motion with A a
constant or A = A(At). They give explicit formulas for the limiting surface
normal velocity v, in terms of various moments of the kernel function, in
any number of dimensions. Moreover, they also give rigorous proof that the
convolution generated motions converge to their stated v,, motion laws in the
limit as At — 0.

One notable implication of their results is that it impossible to obtain
anisotropic motion by mean curvature in three dimensions with this class of
generalizations. L.e., the motion law

v, = b(n)k, (3)

where k is the mean curvature, can only be obtained in > 2 dimensions if b
is constant—in which case the original diffusion-generated motion algorithm
applies. The source of this limitation in higher dimensions can be under-
stood by the same geometric analysis of curvature motion employed in two
dimensions in Figures 4 and 5. Viewed in local geometry, it is clear that
the principle curvatures of the surface have independent influences on the
positioning of any non-spherical Huygens shape (kernel), so it is not simply
their average, k, that determines the motion.
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However, at a more fundamental level these unobtainable motions simply
reflect the limitations of the chosen form of the generalization. In contrast,
the basic concept of convolution generated motion has a great deal of un-
explored flexibility. For example, it turns out that by using two separate,
spherically symmetric, convolution kernels, K; and K,, and thresholding a
convex combination of K * y and K, * y, it is easy to obtain the anisotropic
mean curvature motion (3) that is impossible to obtain with a single kernel.
For another example, by using two kernels and thresholding based on the
differences between K, * y and K, * y, it is possible to obtain a great vari-
ety of steady state and dynamic interface motions associated with pattern
formation. Or, by allowing A to have a nonlocal dependence on K * y in
diffusion-generated motion—specifically, define A to be the level enclosing
the same total volume as the original set—we obtain a simple algorithm for
volume preserving motion by mean curvature. All these convolution gener-
ated motion techniques are beyond the scope of generalizations considered
here, and are the subject of current research and forthcoming reports. The
essential point is that at this early stage of development, convolution gener-
ated motion offers a wealth of unexplored generalizations. The limitations of
any particular form simply provide motivation to look for others.

4.4 Huygens’ Principles for Specific Motion Laws

In the previous section, we discussed the problem of determining the motion
law, given a kernel. Even with a comprehensive answer to this, there still
remains the inverse problem of constructing a specific kernel that achieves
a given surface motion law, v,. For numerical work, we have the further
constraint that the kernel must be computationally convenient.

We will solve this problem explicitly by constructing Huygens’ principles—
i.e. the kernel K and fraction A—for a fairly broad class of geometric curve
motions, and validating their performance with numerical experiments.

Specifically, consider motions in two dimensions where the curve normal
velocity, v,, is a function of the local unit normal vector n and the local
curvature, &, v, = v,(n, k). We will construct specific Huygens’ principles
for all laws of the form

v, =a(n)+ b(n)k
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where b(n) > 0 and b(n) = b(—n). The restriction b > 0 is necessary for the
motion to be mathematically well posed. The additional constraint on b is
a limitation of our construction, but it simply means that the motion does
not depend on which of the two possible orientations, +n, we choose for the
curve.

We carry out the kernel constructions and computations in two dimen-
sions, to simplify the presentation. The construction for the constant part of
the motion a(n) extends trivially to higher dimensions. However, as noted
in the previous section, it is impossible to achieve anisotropic motion by
mean curvature in higher dimensions, so our construction for that part of
the motion has no extension.

In what follows, we will represent the unit normal vector, n, by the angle,
f, it makes with some reference line, which we take to be a horizontal line in
our illustrations. Thus the motion laws have the form

v,(0, k) =a(0) + b(0)k

where b(0) > 0 and b(0) = b( + 7).

Our approach is to obtain separate Huygens’ principles for the anisotropic
constant motion v, = a(f) and anisotropic mean curvature motion v, =
b(#)k, and then combine these to obtain the Huygens’ principle for the com-
posite motion.

5 Anisotropic Curvature Motion

Here we address the problem of finding a Huygens’ principle for the anisotropic,
pure curvature motion

v, = b(0)k.

We will construct a suitable kernel and validate our construction with nu-
merical experiments. Note that we will generate this motion with no explicit
calculation of the normal angle # or curvature of the curve—these details are
all implicitly captured by our choice of kernel.
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5.1 Construction of the Kernel

By adapting the geometric analysis developed to study diffusion-generated
motion, we can construct non-symmetric shapes for generating anisotropic
curvature motions of the form

v, = b(0)k. (4)

Our goal is to determine a shape such that when we position translates
of it exactly halfway (by area) inside the curve, the locus of all shape center
points is the curve advanced by v, At. To begin, we restrict attention to a
small neighborhood of a point p on the curve being updated, as shown in
Figure 5. Locally, we can approximate the curve by the circle of curvature,
so we consider it to be the arc of circle of constant curvature k. Select a
coordinate system so that the y-axis is normal to and intersects the curve
at p, and the origin is located at the center of the unknown shape. If we
assume the shape is going to be symmetrical about its “center”, the x-axis
must cut the shape in half by area, because it runs through the center. But
we also assume the shape is to be positioned so that the curve cuts it in
half. Thus, since both the curve and x-axis cut the shape in half, the total
(signed) area between these cuts must add up to zero. This condition relates
the displacement of p from the origin to the width of the shape—extending
from ¢ = —d to * = d—and allows us to determine d in terms of b. More
precisely, since the update is going to move p to the origin, we require this
distance to be the desired propagation distance v,(p)At = b(0)kAt. The
local equation of the curve is y = S22 — bxAl, so the zero area condition is

d
/ gxz—b(e)mt dr = 0

—d

=d = \/6b(0)At

to leading order. Applying this result for all normal directions 8 gives a
simple equation for the boundary of the shape in polar coordinates,

r(0) = \/6b(0 + m/2)AL

In the derivation, we assumed the shape was symmetrical about its center, i.e.
r(0) = r(0+x), which implies the condition b(#) = b(6+ ). The asymptotics

underlying this analysis require r, and hence b, to be continuous.
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y

o

Figure 5: Derivation of a anisotropic shape for Huygens’ principle.

Combining the results of this geometric analysis with our convolution
formalism, we get that the desired motion law (4) is obtained in the limit as
At — 0 by advancing the front according to the symmetric update (1) using
the (normalized) characteristic shape function,

R B 1 1 if (r,0) e S
K(r,0) = Area(9) { 0 otherwise (5)

for the region

S = {(r,e) cr < J6b(0 + W/Q)At}.

The analysis in [11] applied to this shape provides a rigorous proof of the
convergence of this method for v, = b(0)x.

This generalized Huygens’ principle for anisotropic curvature motion will
also prove useful for deriving more general motions. See Section 7.
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5.2 Numerical Experiments

We now apply our generalized Huygens’ principle to the problem of evolving
curves according to the anisotropic curvature model (4).

Consider, for example, the motion of the simple closed curve given in Fig-
ure 6. Using our new Huygens’ principle for anisotropic curvature motion,
the maximum error? in the position of the front at time ¢ = 0.05 was com-
puted for several At. The results for a number of experiments are reported

in Table I, below.

At Error
0.005000 | 0.02986
0.002500 | 0.01208
0.001250 | 0.00565
0.000625 | 0.00264

Table 1. Errors for an anisotropic curvature motion.

These results are suggestive of an approximately first order error in the po-
sition of the front.

6 Anisotropic Curvature-Independent Motions

Here we construct a generalization of Huygens’ principle to produce anisotropic
curvature-independent motions,

v, = a(9) (6)

and validate the algorithm with numerical experiments.

?Throughout this article, accurate approximations of the exact front location are com-
puted using the Hamilton-Jacobi level set formulation of Osher and Sethian. See [17]. The
introduction (Section 1) explains why the level set method does not supersede convolution
generated motion in general.
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Figure 6: A test problem at various times, . The normal velocity is given

by v, = b(f)x where b(f) = 1 4 3 \Sin(e + 1)

T4
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6.1 Limitations of Updates with Constant Threshold

A variety of anisotropic motions can be obtained by selecting appropriate
kernels and by choosing the proportion, A, of the kernel that lies inside the
initial region. Unfortunately, even certain simple motions are impossible to
simulate using this approach if A is chosen to be a constant independent of
the normal direction. We now demonstrate this fact for the geometric version
of our generalized Huygens’ principle for the simple motion law

v, = |sin(0)]. (7)

To begin, assume that there is a shape, S, which generates the desired
motion (7) and let Sy be the origin point used to trace out the updated curve.
The shape, S, is placed so that a proportion, A, is inside the initial region.
Because vertical line segments remain stationary under the motion law (7),
Sp must lie on the interface for both of the shapes displayed in Figure 7. But
Sy is fixed relative to S, so A must equal 1/2. The position of S; may now be
determined using the fact that the updated curve lies a distance At outside
the initial rectangle for horizontal segments. Carrying out this construction
gives different positions for Sy—and hence different velocities of motion—
when 6 = 7/2 and § = —7 /2 (see Figure 8), in contradiction to our assumed
velocity law (7).

Because general anisotropic motions such as (7) cannot be reproduced
using our generalized Huygens’ principle with a constant A, we focus our
attention on methods which select A as a function of the normal direction,
ie.,

A= A(0).

6.2 Construction of a Normal Dependant Threshold

Based on the geometric form of Huygens’ principle, the normal velocity v, =
a(f) can be easily obtained by varying the proportion, A, of a shape lying
inside the initial region according to the normal direction.

To illustrate this idea, consider the motion of a straight line moving with
a normal velocity v, = a(f). Geometric analysis (see Figure 9) shows that if
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c@ 0S0
(1-M)A AA
(

B 1A

Figure 7: Choosing A to achieve vertical interface velocity v, = 0.

Figure 8: Contradictory position of the origin point S, for horizontal interface
velocity v, = 1.
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discs of radius r are placed so that a proportion,

\0) = % ~ Laresin (“(G)At) - “(93 At cos (arcsin (“(G)At)) (8)

T r Tr r

of each disc is inside the initial region, then the updated front location is
given exactly by the locus of disc centers.

The motion of general smooth curves may also be approximated using
this technique. For such problems, small® discs of radius r = O(At) are
placed so that a proportion (8) lies inside the initial region. The locus of
disc centers then gives an approximation of the front location after a time
At (see, e.g., Figure 10). Equivalently, this motion may be generated by
updating the region according to

(7 :y* K(F) > \0)} (9)

where x is the characteristic function for the initial region, K is the (nor-
malized) characteristic function for a small disc and A(#) is given by Eq. (8).
Using the considerations of Section 5.1, it is easy to show that this approach
gives a locally first order approximation

u, = a(0) + O(Atk)

of the desired motion law (6) for smooth curves.
Of course, other kernel functions may used to generate a first order ap-
proximation of the desired motion. We have found that a Gaussian kernel,

K(#) = K7 (7) = 126Xp (_ ! |:zf|2) (10)

4o?
where o ~ maxg |a(0)| At is an especially attractive choice because:

1. The smooth kernel, Kg; (+), can be represented using fewer Fourier basis
functions than the characteristic function for a disc of radius At. Fur-
thermore, the convolution product ¢(#) = y * Kg; (%) is continuously
differentiable. Thus, a first order approximation of the normal direction
can be obtained by approximating Ve /|Ve|. See Appendix A.

3For example, the choice r = maxy |a()| At will suffice.
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Figure 9: Determination of the proportion, A(8), of the disc which is inside
the region.

2. The function A(+) has a simple analytic expression,

\0) = % - %erf (gz(ﬁt) . (11)

3. The Fourier transform of the Gaussian kernel is also given by a simple

analytic expression,

. 1 1
Kg;(j,k) = //Kg;(x,y)exp(—Zﬂ'ijx)eXp(—Zﬂ'iky) dx dy
o Jo
= exp(—4x2(j2 + k?)o?).

(We use the Fourier transform of the kernel to compute the convolution
product, y * K. See Appendix A.)

The accuracy of the method will depend on the effective radius of support,
o. If o is too large, then the error will be dominated by artificial diffusion-
generated curvature motion. Conversely, if o is too small then very little
damping of high frequency error modes occurs and oscillations may dominate
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Figure 10: If a proportion ; — ~arcsin(cos(f)) — cos(6) cos(arcsin(cos(f))) of

1 1
2 TAL

each disc is inside the initial region, then an approximation to the normal
velocity v, = cos(f) is generated.
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the error. Small kernels are also more computationally expensive to use
because they require more Fourier modes to be adequately represented (see
Appendix A). Although the optimal choice of o will be problem-dependent,
it is clear that o ~ maxy |a(f)| At since the kernel should have a radius of
support that is comparable to the maximum displacement over one timestep.
Indeed, our numerical studies simply select

o= méax|a((9)|At (12)

since this choice gives very good results for an interesting variety of problems.
Note that this added dissipation is similar to the use of artificial dissipation
to stabilize classical difference schemes for advection equations.

6.3 Numerical Experiments

Several numerical experiments were carried out to study our methods. We
now describe some of these experiments for the model problem given in Fig-
ure 11.

To begin, suppose that regions are updated using a kernel which is a char-
acteristic shape function and that normal directions are approximated using
Vy* K(2)/|Vx * K(Z)|. For such methods, it was found that oscillations in
the front could develop, leading to an O(1) error in the solution. Fortunately,
such errors are greatly reduced by selecting a Gaussian kernel for updates
and normal calculations. See, e.g., Figure 12.

Using the Gaussian kernel (10), and the proposed choice of o (see Eq. (12)),
solutions to the model problem were computed. Based on these results, the
maximum error in the position of the front was calculated at time ¢ = 0.1 for
several At. The results for a number of experiments are reported in Table II,
below.

At Error
0.0200 | 0.03106
0.0100 | 0.01387
0.0050 | 0.00519
0.0025 | 0.00194

Table II. Errors for an anisotropic motion.
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Figure 11: A test problem at various times, . The normal velocity is given

by v, = a(#) where a(0) = 3 + sin(26).

As expected from the discussion of the previous section, these results are
suggestive of an approximately first order error in the position of the front.

7 General Anisotropic Motions

In the previous sections, we developed methods for generating a variety of
anisotropic motions. We now combine these methods to produce more gen-
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(a) A nonsmooth kernel. K is (b) A Gaussian kernel.
given by Eq. (2) with r = 2A¢. In this example, K = Kéﬁ

Figure 12: Results using different kernel functions.

eral anisotropic motions,
v, = a(0)+ b()x, (13)

and validate algorithms with numerical experiments.

7.1 A Simple Algorithm

As we have seen in Section 5.1, a normal velocity
v, = b(0)k (14)

is generated by advancing the front according to the symmetric update (1)
using a (normalized) characteristic shape function (5). Other anisotropic
motions,

v, = a(9)
are obtained using non-symmetric updates of the form,

{71y K(F) > M0)}. (15)

By combining the shape for anisotropic curvature motion with non-symmetric
updates, methods for general motions (13) may be derived.
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To see this, consider the evolution of a straight line moving with the
general normal velocity (13). (A method for the isotropic case is derived in
[13].) Now, position a shape

S = {(r, 0) < \Job(0 + W/Q)At}

so that the center point is a distance a(0)At away from the front. It is easy
to see, geometrically, that a proportion

1 2a(0),/6b(0 + 7 /2YAtAL

Aoy = L 200 /6b00 + 7/2) 6)

2 Area(S)
of S lies inside the initial region (see Figure 13). Thus, for straight lines
the desired motion (13) is obtained using the non-symmetric update (15)
with Eq. (16). Of course, even curved segments may be treated in this

manner when b(+) is strictly positive since the shape S contributes a curvature
component (14) to the motion. Based on this fact, we obtain the following
method for general anisotropic motion (13):

ALGORITHM Anisotropic
GIVEN: A motion law, v, = a(#) + b(#)x, and an initial region, R.

BEGIN
(1) Construct the kernel, K, from Eq. (5).
Set y equal to the characteristic function for R.
(2) REPEAT for all steps:
BEGIN
Set x equal to the characteristic function for the updated region (15)
where A(+) is given by Eq. (16).
END
END

Remark: If 6(0) = 0 for some 6, we may split the motion law (13) and
alternately treat the curvature-dependent and curvature-independent com-
ponents using the methods of Sections (5.1) and (6.2), respectively. When
b(-) is strictly positive, however, the algorithm Anisotropic is usually pre-
ferred because fewer Fourier modes are (typically) required to adequately
represent the relatively large kernel function and because only one update is
required per time step.
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0+11/2)

0, A2

(a) For anisotropic curvature motion (b) For general anisotropic

)
r(0) = \/66((9 + 7/2)At and A =1/2. motions A(-) depends on 6.

Figure 13: To achieve a normal velocity v, = b(0)x, we select a shape ac-
cording to (a) and set A = 1/2. This same shape produces a normal ve-
locity v, = a(f) for a straight line if A = 1/2 — 2a(0)r(0 4+ 7/2)At/A (see
(b)). For curved fronts, both contributions occur and an approximation to

v, = a(f) + b(0)x is produced.
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7.2 Numerical Experiments

We now apply our generalized Huygens’ principles to the problem of evolving
curves according to the general anisotropic model (4).

Consider, for example, the motion of the closed curves given in Figure 14.
Using our algorithm Anisotropic, the maximum error in the position of the
front at time ¢ = 0.03 was computed for several At. The results for a number
of experiments are reported in Table III, below.

At Error
0.00600 | 0.05499
0.00300 | 0.02933
0.00150 | 0.01579
0.00075 | 0.00809

Table TII. Errors for a general anisotropic motion.

As in previous examples, these results are suggestive of an approximately
first order error in the position of the front.

8 Conclusion

We have developed the generalizations of the diffusion-generated motion first
suggested in the original exposition [14], and in particular the algebraic-
geometric duality for convolution generated motion and generalized Huy-
gens’ principles. We also used this framework to construct specific convo-
lution kernels for generating the anisotropic curvature motions of the form
v, = a(n)+b(n)k in two dimensions, and by direct extension, for anisotropic
constant motion plus isotropic mean curvature motion v, = a(n) + bx (b
constant) in higher dimensions. We implemented these numerically using
adaptively refined fast Fourier transform techniques for evaluating the con-
volution, and validated the performance of the methods on problems that
include topological change.

In current research, we are extending these new convolution generated
motion techniques to perform anisotropic curvature-dependent motion of
triple points and general networks of curves. Convolution generated motions
for the isotropic case v,, = a 4 bk extend naturally to multiple junctions, just
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Figure 14: A test problem at various times, . The normal velocity is given by

v, = a(0)+b(0)r where a(f)
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as for the original diffusion-generated motion algorithm. But for anisotropic
motions, there are more complicated conditions on the triple point equilib-
rium angles, and it remains to determine a suitable thresholding step that
properly enforces these equilibrium angles as boundary conditions. This is a
subject of ongoing research.

We are also developing multiple-kernel convolution generated motions,
since these appear to provide a convenient way to generate interface velocities
that are unobtainable with single kernels (e.g. anisotropic mean curvature
motion in more than two dimensions). In this approach, the characteristic
function is convolved with multiple kernels, v« K, x * K,,...,x * Ky, and
these are combined in some convex combination or differencing combination
prior to the thresholding stage. The focus of this research is on obtaining
specific kernels for desired motions, and for determining how many kernels
are necessary to generate various general classes of velocity laws in simple
fashions.

Finally, we are working on developing the connection between convolution
generated motion and cellular automata, both at the conceptual level and
the computational level. Computationally, we are investigating the use of
multiple-kernel motions to obtain spiral waves and steady state patterns
seen in automata, but with much less computational effort and much greater
accuracy in approximating the limiting interfaces.
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A  Numerical Considerations

The spatial discretization of the algorithm Anisotropic may be carried out
in a variety of ways. A naive discretization using a pseudo-spectral method
or using finite differences on a uniform grid typically is adequate for crude
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but illustrative results. For fast, accurate results, the sharpening methods
given in [25] may be used. We now outline the application of these methods
to the algorithm Anisotropic for a square domain D = [0,1] x [0,1]. For
further details, see [25].

To begin, the characteristic function for the initial region, x°(+), and the
kernel, K(-), are approximated by Fourier tensor products,

X2(%) = > )A(?k exp(2rija) exp(2riky),
—n<j,k<n—1

K, (%) = > [g'jk exp(2rijx) exp(2riky)
—n<j,k<n—1

using the algorithm Sharpen, defined below. Multiplying in Fourier space
gives a simple estimate for the convolution product, (%) = y * K(Z):

0, (%) = > f(?kﬁ’jk exp(2mijx) exp(2wiky).
—n<j,k<n—1

The Fourier representation of the characteristic function for the updated
region,

XalF) = X Xjpexp(2rijz)exp(2miky) (17)
—n<j,k<n—1

may now be determined using an adaptive quadrature method rather than a
pseudo-spectral method (see Remark 1). Begin by defining

R = {7 o) > \0)}
to be the approximation of the region we are following. By multiplying

Eq. (17) by exp(—2wija)exp(—2wiky), integrating over the domain and sim-
plifying via the usual orthogonality conditions we find

11
Xk = / / Xn (%) exp(—2mijx) exp(—2xiky) da dy. (18)
o Jo

But x,(+) is an approximation of the characteristic function, x(-),

X(f):{ lifze R

0 otherwise
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so Eq. (18) may be re-written as

Nix = //exp(Qﬂjx)eXp(Zﬂ'iky) dA.
R

Thus, x,(-) may be obtained by integrating simple functions over a com-
plicated, non-rectangular region, R. This task is accomplished by recursively
subdividing the domain into small squares according to the following algo-
rithm:

ALGORITHM Sharpen
GIVEN: A domain D = [zq, 2] X [yo,y,] and a function ¢, (7) = x° * K, (7).

BEGIN
(1) Approximate the normal direction to the curve over D
using some approximation to Vi, /|Ve,|.
(2) Calculate X using either Eq. (11) or Eq. (16).
(3) TF max(z; — x4, y; — yo) < MINIMUM_CELL_WIDTH
Approximate D N R by 1 or 2 triangles using linear interpolation.
For each triangle, T, add a contribution [ [, exp(—2rijz)exp(—2niky) dA
to each Fourier coefficient, ;.
RETURN
END IF
(4) IF @n([l’o?yo]) > )‘7 S‘Qn([xmyf]) > )‘7 S‘Qn([vayo]) > A and S‘Qn([xﬁyf]) 2 A
Assume D € R and add a contribution
[ [pexp(—2mijx)exp(—2miky) dA to each x ;.
FLSE TF g, ({20, 50]) < A @n[0,47]) < A al2290]) < A and o,([2,7]) < )
Assume D N R = (). No contribution to the Fourier coefficients is made.

ELSE
Divide D into quadrants and Sharpen each quadrant.
END IF
END

Remarks (See [25] for further details.):

1. If a pseudo-spectral method is used to discretize the algorithm Anisotropic,
then an O(1/n) error in the position of the front is generated at each
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time step. Reducing these errors to an acceptable level is often imprac-
tical because such a large number of basis functions are required. Far
fewer basis functions are needed using Sharpen because this approach
gives a more accurate representation of the front. For example, the
errors shown in Table TIT were obtained using n = 64. Essentially the
same results were obtained using larger values of n.

2. In step (1), the normal direction may be approximated using either
centered differences, one-sided differences (e.g., [27]) or by differentiat-
ing the Fourier series ¢,(-). In our simulations, second order centered
differences are preferred because they are simple, computationally in-
expensive and produce errors which are comparable to other, more
involved methods.

3. To capture the large-scale features of the shape, Sharpen should be
applied to a number of equally-spaced subregions of the domain rather
than to the domain itself. Typically, 2n x 2n subregions are selected
because the corresponding w-values can be rapidly evaluated using a
fast Fourier transform.

4. Small pieces of certain shapes are occasionally neglected by Sharpen.
To capture the entire interface at the level of the finest grid, a grad-
ual refinement can be used (e.g, Figure 15). This method proceeds
according to the original algorithm, with the following additional con-
sideration:

Whenever any cell is refined, check the subdivision level of
the neighboring cells. Subdivide neighbors which are two or
more levels of refinement coarser.

5. During mesh refinement, a large number of function evaluations are
required. Because these occur on an unequally spaced grid (see, e.g.,
Figure 15), a fast Fourier transform cannot be used. Direct evaluation
is often prohibitively expensive, however, since O(n2?N,,) operations are
required to evaluate ¢(-) at N, points. For these reasons, our implemen-
tations use a recent unequally spaced fast Fourier transform method [2].
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Figure 15: A gradual refinement starting from a coarsest mesh.

This approach carries out N, evaluations of ¢(-) in

0 (Np log? (%) + n? log(n))

operations where ¢ is the precision of the computation. Unequally
spaced transform methods are also used for the rapid evaluation of the
Fourier sums that arise in steps (3) and (4) of Sharpen.
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