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Abstract

The problem of simulating the motion of evolving surfaces with
junctions according to some curvature-dependent speed arises in a
number of applications. By alternately diffusing and sharpening char-
acteristic functions for each region, a variety of motions have been
obtained which allow for topological mergings and breakings and pro-
duce no overlapping regions or vacuums. However, the usual finite
difference discretization of these methods are often excessively slow
when accurate solutions are sought, even in two dimensions.

We propose a new, spectral discretization of these diffusion-generated
methods which obtains greatly improved efficiency over the usual fi-
nite difference approach. These efficiency gains are obtained, in part,
through the use of a quadrature-based refinement technique, by inte-
grating Fourier modes exactly and by neglecting the contributions of
rapidly decaying solution transients. Indeed, numerical studies demon-
strate that the new algorithm is often more than 1000 times faster than
the usual finite difference discretization.

Our findings are demonstrated on several examples.
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1 Introduction

In a variety of applications, one wants to follow the motion of a front that
moves with some curvature-dependent speed. Such motions can be partic-
ularly challenging to approximate when more than two phase regions are
present because junctions of moving surfaces can occur. To simulate the evo-
lution of such models, a number of numerical methods have been developed.

Front tracking methods (e.g., [4]), for example, are often well-suited for
curves that never cross because they explicitly approximate the motion of
the interface rather than a level set of some higher dimensional function.
When line or planar segments interact, however, decisions must be made as
to whether to insert or delete segments. Because complicated topological
changes are often possible, front tracking methods can be impractical to
implement, especially in more than two dimensions.

Other approaches also have limitations. Monte-Carlo methods for Potts
models (e.g., [10]) can introduce unwanted anisotropy into the motion due
to the spatial mesh [24] and are typically too slow to find accurate approxi-
mations of the model. Phase field methods (e.g., [5]) are often inherently too
expensive for practical computation [14] because they represent the interface
as an internal layer, and thus require an extremely fine mesh (at least locally)
to resolve this layer.

To address these concerns for the case of pure mean curvature flow (i.e.,
each interface moves with a normal velocity equal to its mean curvature, &),
a method (MBO) based on the model of diffusion-dependent motion of level
sets was proposed by Merriman, Bence and Osher [13, 14]. This method
naturally handles complicated topological changes with junctions in several
dimensions and has been proven to converge when two phase regions are
present [8, 2]. Furthermore, a generalization [19] of this method allows each

interface, I';, to move with a normal velocity,

79
Vij = Vijhij T € — € (1)

as 18 shown in Figure 1. Unfortunately, the usual finite difference discretiza-
tion of these methods is often exceedingly slow when accurate results are
sought, even in two dimensions.

Alternatively, a recent variational approach [25] may be used to approx-
imate the motion (1) when topological mergings and breakings occur. This
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Figure 1: The interfaces, I';

;» move with a normal velocity v;; = v, %,;+e;,—e¢;

and are subject to angles 6, 6,, 6.

approach is especially well-suited for treating problems with additional con-
straints. Unfortunately, it is unable to approximate many problems involving
r > 3 phase regions since only r independent v;; may be prescribed. Fur-
thermore, this method limits angles to the classical condition (see, e.g., [22])

sin(f,)  sin(f;)  sin(0;)

V23 713 T2

at triple points.

In this paper, we propose a new, spectral discretization for the diffusion-
generated methods which obtains greatly improved efficiency over the usual
finite difference discretization. Although these algorithms are given (for sim-
plicity) for the MBO-method, we note that they may also be applied to the
diffusion-generated approach described in [19]. Our algorithms, when ap-
plied to the MBO-method give a simple, fast way of approximating motion
by mean curvature and when applied to the diffusion-generated approach [19]
provide a practical tool, not available hitherto, for accurately treating a wide
variety of motions described by the multiphase model (1). An outline of the
paper follows.
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In Section 2, we give the MBO-method for two phase and multiple phase
problems. For the case of the finite difference discretizations originally pro-
posed [13], the selection of the step size is discussed and several limitations
of the method are identified.

In Section 3, a new, spectral method for the realization of the MBO-
method is proposed and described in detail. A spatial discretization is given
and an efficient quadrature for calculating the corresponding Fourier coeffi-
cients is provided. This quadrature obtains accurate approximations to the
front using a piecewise linear approximation to the surface and a gradual
refinement technique. Unequally spaced transform methods for the rapid
evaluation of the Fourier coefficients are also applied.

Section 4 gives a comparison of the proposed method and the usual finite
difference approach. In particular, numerical experiments are presented to
illustrate the efficiency gains which arise from our method.

In Section 5, we use our algorithms to examine the numerical convergence
properties of the MBO-method and apply our algorithms to the motion by
mean curvature of surfaces. This section also demonstrates that extrapola-
tion can be used in conjunction with the new, spectral method to produce
improved estimates of certain quantities of interest (e.g., phase areas).

2 The MBO-Method

An algorithm for following interfaces propagating with a normal velocity
equal to mean curvature was introduced by Merriman, Bence and Osher
[13, 14]. In this section, we describe the method for the two phase and

multiple phase problems.

2.1 The Two Phase Problem

Suppose we wish to follow an interface moving with a normal velocity equal
to its mean curvature. To evolve a surface according to this motion, we may
use the MBO-method for two regions:

Here we have selected zero flux boundary conditions to ensure that the curve meets the
boundary at right angles, as is appropriate for certain grain growth models [4]. Alterna-
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MBO-Method (Two Regions)
BEGIN
(1) Set U equal to the characteristic function for the initial region.
e, set U(#,0) = 1 ifx bel.ongs to the initial region
0 otherwise.

REPEAT for all steps, j, from 1 to the final step:
BEGIN
(2) Apply diffusion® to U for some time, At.
. L . U, = V2U,
i.e., find U(¥,jAL) using { W — 0 on 9D
starting from U(, (j — 1)At).
(3) “Sharpen” the diffused region by setting
e [0 U AN >
U(#,jAt) = { 0 otherwise.
END
END

For any time ¢, the level set {Z : U(#,t) = 1} gives the location of the
interface.

2.2 Multiple Regions

To obtain a normal velocity equal to the mean curvature for symmetric junc-
tions (e.g., a 120-120-120 degree junction in two dimensions), we may apply
the MBO-method for multiple regions:

MBO-Method (Multiple (r) Regions)
BEGIN
(1) Fori=1,...,r

tively, one may minimize the effects of the boundary by selecting non-reflecting boundary
conditions, 3627% =0, (cf. [25]) or use Dirichlet conditions to produce a constrained motion.
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Set U,(Z,0) equal to the characteristic function for the ith region.

REPEAT for all steps, j, from 1 to the final step:
BEGIN
(2) Fori=1,...,r, starting from U;(Z, (j — 1)At),
Apply diffusion to U, for some time slice, At.

aU;
) . ) L= V2.
e at v
i.e., find U,(%, jAt) using { % = 0 on 0D.

(3) “Sharpen” the diffused regions by setting the largest U; equal to 1
and the others equal to 0 for each point on the domain.
END
END

For any time ¢, the interfaces are given by

U {7 : U@, 1) = max{U;(Z, 1)},

i=1,...,7

2.3 Time Step Selection

To accurately resolve the motion of features of the interface, it is also impor-
tant to select At appropriately. In particular, diffusion must proceed long
enough so that the motion of the interface over each step can be resolved by
the spatial discretization. For the case of a finite difference discretization,
the level set U = % must move at least one grid point, otherwise the interface
remains stationary [14]. This produces the restriction that

(speed of motion of the interface) x At > grid spacing

Letting k be the curvature and h the grid spacing, we arrive at a restriction
for the finite difference approach [14],

kAL > h. (2)

As we shall see, the restriction (2) does not appear for the new, spectral
method that we propose in Section 3.
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2.4 Limitations of Finite Difference Discretizations

We have seen from the previous section that we are restricted in our choice
of h for finite difference discretizations of the MBO-method. Specifically,
once a sufficiently small At is selected, the mesh spacing, h, must be chosen
small enough (see Eq. (2)) so that the level set moves at least one grid point,
otherwise the sharpening step leaves the front stationary.

Satisfying the restriction (2) can be computationally impractical even for
smooth, two phase problems in two dimensions. Consider, for example, the
motion by mean curvature of the boundary of a spiral-shaped region. Since
the local curvature of the boundary of such a problem can vary tremendously,
it may be impractical to satisfy (2) everywhere using a uniform mesh.

To achieve a more efficient finite difference algorithm, one might consider
discretizing the MBO-method using a local mesh refinement at the level of the
PDE. However, carrying out local mesh refinement is rather involved for level
set methods when curvature terms arise (see [15]). An alternative approach
is to place a narrow band of grid points around the front (cf. [1]). Even
this optimized, finite difference approach can lead to a prohibitive number of
operations per step when an accurate solution is sought.

For example, consider the motion by mean curvature of a smooth curve.
For such a curve, each step of the MBO-method produces an O(At2) error
in the position of the front [18]. To preserve the overall accuracy of the
method, grid points must be at most a distance O(At?) apart since each step
produces an error which is comparable to the mesh spacing. Noting that
the front travels a distance O(At) per step of the method, it is clear that

a minimum of O (ﬁ

e.g., Figure 2). Thus, a minimum of O (

) grid points are needed to safely band a curve (see,

1
NG
to preserve the overall accuracy of the method, which is often prohibitively

expensive when accurate results are sought.

A further limitation of the finite difference approach is that the error is not
regular. Specifically, very small differences in the position of the level set 1/2
before sharpening can produce jumps in the front location after sharpening.
This type of error is undesirable because it makes the construction of higher

) operations per step are required

order accurate, extrapolated results impractical. Figures 3 and 4 illustrate
how a small change in the position of the level set 1/2 can lead to a jump
in the front location after sharpening. (We shall see in the next two sections
that our proposed method essentially eliminates the spatial error to allow for
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Figure 2: A banded, finite difference mesh.

higher order accurate extrapolations in At.)
To avoid the limitations outlined in this section, we introduce a new,
spectral method for realizing the MBO-method in the next section.

3 A New, Spectral Method

As we shall see later in this section, accurate computation of solutions using
the usual finite difference discretization of the MBO-method can be expen-
sive, even for simple two dimensional problems. Since we are mainly inter-
ested in three dimensional problems or problems involving more than two
phases, a faster method is desired. This section describes a new, spectral
method for realizing the MBO-method which is typically much faster than
the usual finite difference approach.

For notational simplicity, the algorithm focuses on the two phase case over
the domain, D = [0, 1] x [0, 1]. Certain extensions to three spatial dimensions
and more phases are also discussed.
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Figure 3: Sharpening a shape.

Figure 4: Sharpening a perturbed shape.
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3.1 Discretization of the Heat Equation

As we have seen in the previous section, carrying out diffusion-generated
motion by mean curvature requires us to solve the heat equation

ut = Auv (3)
0
a—Z = 0on 0D

repeatedly over time intervals of (possibly variable) length At, starting from
the characteristic function of the region to be followed. Over any of these
time intervals, u may be approximated by the Fourier cosine tensor product,

n—1
Ulz,y,t) = Y cjexp(=m2[i + j?[t — ty,,]) cos(miz) cos(mjy)  (4)
i,j=0
for tyy <t < tgyums + At, where t,,, is the time when the current interval
starts.

One might expect that a Fourier spectral approximation for u would be
unwise because u is initially discontinuous at interfaces. We are only inter-
ested in the solution after a time At, however. After a sufficiently large time
At, high frequency modes have dissipated. Since the problem is linear, dif-
ferent modes do not interact and thus there is never a need to approximate
high frequency modes (not even near ¢ when high frequency modes make
an important contribution to the solution). For this reason, an accurate ap-

start?

proximation to (3) at time At can be obtained using far fewer basis functions
than might otherwise might be expected. Indeed, to approximate the posi-
tion of the front to within a distance O(¢), our implementations simply select
an n satisfying
| In(e)]

"z T2 At 5)
and verify the corresponding results by repeating the calculation with a dif-
ferent n (see also [18]).

3.2 Calculation of the Fourier Coefficients

The values of the Fourier coefficients, ¢;;, of equation (4) must still be de-
termined at the beginning of each time step (i.e., immediately following the
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sharpening of the previous step). In fact, we calculate these coefficients as
part of the sharpening step using an adaptive quadrature method rather than
a pseudospectral method. Begin by defining

Ro={(9): Uleyt) > 5)

to be the approximation of the phase we are following. By multiplying equa-
tion (4) at time t = t,,,, by cos(wiz)cos(7jy), integrating over the domain
and simplifying via the usual orthogonality conditions we find

Coo — fol fol U(xvyvtstart) dx dgv

Co = 2[01 fol U(l’, y7tstart) COS(WiJ?) dx dy for 7& 07
ch = 2[01 fol U(l’, y7tstart) COS(ﬂ'jy) dl’ dy fOI’ ] 7& 07
c; = 4f01 fol Uz, y,tgq,) cos(miz) cos(njy) dv dy for ¢,5 # 0.

Immediately after sharpening,

0 otherwise

U= {

which implies that

c; = ’yij//cos(ﬂ'ix) cos(mjy) dA (6)
R,
where
1 ifi=45=0
V=9 4 ifi#£0and 7 #0 (7)

2 otherwise

Thus, simple functions must be integrated over a complicated, non-rectangular
region, R,. This may be accomplished by recursively subdividing the domain
(cf. [21, 20]), as we illustrate for the region, R, given in Figure 5a.

We begin by evaluating U at the corners of a number of equally-sized
subregions, so as to capture the large-scale features of the shape. Typically,
n x n subregions are selected because the corresponding U-values can be
evaluated in just O(n?log(n)) operations using a fast Fourier transform (see,
e.g., [6]). If the phase at all four corners of any subregion corresponds to
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o 1 o 1

Fig. ba. Initial Region, R Fig. 5b. Coarsest Subdivisions

Figure 5: Subdividing the domain into its coarsest subregions.

white, then we assume that the subregion does not intersect with R and hence
no contribution to the Fourier coefficients is made. This case corresponds to
the subregions of Figure 5b which have at least one dashed edge. If all
four corners of a subregion, Q, correspond to grey, however, we assume that
Q) C R and add a contribution

%j//cos(ﬂ'ix) cos(mjy) dA
Q

to each of the Fourier coefficients, ¢;;, for 0 < 2,7 < n — 1. This case
corresponds to the subregions of Figure 5b which have at least one thin, solid
edge. Finally, if two phases occur, further subdivisions are carried out. We
demonstrate this subdivision procedure for the subregion, (), of Figure 5b.
Because () is a mixed region, we divide it into quadrants, as shown in
Figure 6b. Since the phase color at all corner points of quadrant Q1 is white,
we assume that this quadrant does not intersect with R and hence does not
contribute to the Fourier coefficients. For each of the remaining quadrants,
2, Q% and @1, two phases occur, so further subdivision is required. See
Figure 6c.
Focusing on the refinement of the subregion, @7, we find that the phase of
the upper right hand corner of Q! is different than that of the other corners.
Thus, Q1 is also subdivided. Corner points of the remaining subregions are
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(0.375, 0.875) (0.5, 0.875) (0.375, 0.875) (0.5, 0.875)

(0.375, 0.75) (0.5, 0.75) (0.375, 0.75) (0.5, 0.75)

Fig. 6a. Initial Subregion Fig. 6b. One Subdivision

(0.375, 0.875) (0.5, 0.875) (0.375, 0.875) (0.5, 0.875)

(0.5, 0.75) (0.375,

Fig. 6¢c. Two Subdivisions Fig. 6d. Four Subdivisions

(0.375, 0.75)

Figure 6: Dividing a subregion.

grey, so we assume Q% C R for k = 2,3,4 and add contributions

%j//cos(ﬂ'ix) cos(mjy) dA
Ok

to each of the Fourier coefficients, ¢;;, for 0 <i,5 < n — 1. Recursive subdi-
visions of the domain continue (see, e.g., Figure 6d) until regions containing
multiple phases can be safely approximated by some simple numerical tech-
nique. The next section discusses methods for approximating the regions at
the finest grid subdivisions.
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3.3 Approximation of the Finest Subregions

In the previous section, a method was introduced for recursively dividing the
domain into rectangles. At some point, however, we must stop subdividing
and treat the finest cells. This section discusses how to approximate the
contributions to the Fourier coefficients at the finest grid subdivisions.

3.3.1 Piecewise Linear Approximation for Two-Phase Problems

To produce an O (Z—i + h2) approximation of the interface, a simplicial de-
composition of the region, R, with a piecewise linear approximation to the
boundary can be used. We now describe such a method for two phase prob-
lems in two and three dimensions.

Two Dimensional Problems

There are three main steps for approximating the integrals (6) over the finest
grid subdivisions for two phase problems in two dimensions. These are de-
tailed below.

Step 1. Divide the Square Cell into Two Triangles.
To simplify the implementation of Step 2, we begin by breaking the
square subdomain into two triangles and consider each separately.

Step 2. Approximate Regions Using Triangles.
We next approximate the desired phase with a number of triangular
subregions. Details for this approximation method are now given for
each of the four possible cases.

Case 0. If none of the corners of the triangle belong to R, then we
assume that R and the triangular subdomain do not overlap. No
contribution to the Fourier coefficients is made.

Case 1. If one corner is in R, then linear interpolation is used to deter-
mine a triangular approximation to the subregion. For example,
consider approximating the gray phase in AABC of Figure 7. Let-
ting U(A),U(B) and U(C') be the function values at points A, B
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and C', we approximate where the curve crosses the edges of the
triangle by points a and b,

LU
LU
S G e R

This gives a triangular approximation, AbaC', to the desired sub-
region which can be used to approximate the contributions to the
Fourier coefficients (see Step 3 below).

Case 2. If two corners are in R, then we represent the shape as the
difference of shapes which are treated using Cases 1 and 3. See

Figure 8.

Case 3. If three corners are in R, then we assume that the entire
subdomain belongs to R, and we approximate the integrals (6)
over the entire subdomain.

We seek an estimate of the error produced by this step for a smooth
curve. One source of error occurs when smooth curves are approxi-
mated by line segments. By Figure 9, this approximation produces an
O(h?) error in the position of the front, since the curvature is indepen-

dent of h.

We also produce errors by replacing the actual front position with the
interpolation (8). In this case we expect an O (Z—i) error, based on the

one dimensional studies given in [18].
Taking into account both of the contributions to the error, we find that

this triangular approximation of regions produces an O (Z—i + h2) error
in the position of the front.

Step 3. Integrate over each Triangular Subregion.
We are now left with the task of adding a contribution

L, = ’yij//cos(ﬂ'ix) cos(mjy) dA (9)
T,

to each Fourier coefficient, ¢;., for each triangular subregion, 7.

YRl
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—>

Approximate

Figure 7: A shape represented by a triangle.

Figure 8: A shape represented by a difference of triangles.



3 A NEW, SPECTRAL METHOD 17

2 2
approximately K% =0(h)

R\
V}e \\\

Figure 9: Errors approximating curved segments.

Expanding the integrand about the centroid, (&,7), of T}, yields

L = vi;Area(T)) cos(mix) cos(myy) + O([22 + j2]h*)  (10)
where Area(T},) is the area of triangle T;. This approximation is pre-
ferred over the direct evaluation of the integrals (9) because it is much
faster (it only requires two trigonometric evaluations) and it produces
errors which are typically small relative to those arising in Step 2.

Three Dimensional Problems

There are also three steps for approximating the contributions to the Fourier
coefficients over the finest grid subdivisions for two phase problems in three
dimensions. These are outlined below.

Step 1. Divide the Cube into Six Tetrahedrons.
To simplify the implementation of Step 2, we begin by breaking cube-
shaped subdomains into six tetrahedrons and consider each separately.

Step 2. Approximate Regions Using Tetrahedrons.
We next approximate the desired phase with a number of tetrahedrons.



3 A NEW, SPECTRAL METHOD 18

For smooth surfaces! this step produces an O (Z—i + h2) error in the
position of the front where h is the width of the finest grid subdivision.
An outline of this approximation method is now given for each of the
five possible cases.

Case 0. If none of the corners of the tetrahedron belong to R, no
contribution to the Fourier coefficients is made.

Case 1. If one corner is in R, then we linearly interpolate to esti-
mate the location of the interface and approximate the region by
a tetrahedron.

Case 2. If two corners are in R, then we estimate the location of the
interface and break the subregion into three tetrahedrons. For
example, the shaded region of T g p in Figure 10 is approximated
by the tetrahedrons Tg, ¢, T, and Tg,p,.

Case 3. If three corners are in R, then we represent the shape as the
difference of shapes which are treated using Cases 1 and 4.

Case 4. If four corners are in R, then we assume that the entire sub-
domain belongs to R, and we approximate the integrals (11) over
the entire subdomain.

Step 3. Integrate over each Tetrahedron.
For each tetrahedron, T}, a contribution

L = 2p///Cos(ﬂix)cos(rjy)cos(rkz) dv (11)
T,

must be added to each Fourier coefficient, ¢,;;, where p is the number
of nonzero elements of {1, j, k}.

Expanding the integrand about the centroid, (2,7, 2), of T, yields

L1 = i, Volume(T),) cos(mix) cos(mjy) cos(mkz)

'In three dimensions, nonsmooth corners may arise from singularities in the solution.
Each corner can produce an @(h?) error in the phase areas. However, because these corners
are rapidly smoothed away, they typically do not affect the overall order of accuracy of
the method.
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Figure 10: A shape approximated by tetrahedrons.

where Volume(T)) is the volume of tetrahedron, T,. Similar to the
two dimensional case, this approximation is preferred over the direct
evaluation of the integrals (11) because it is much faster and it produces
errors which are typically small relative to those arising in Step 2.

3.3.2 Approximation of Junctions

A number of methods for accommodating junctions are available [18]. A
particularly simple and accurate approach is to recursively subdivide any
region containing more than two phases. After only a few iterations, the
smallest subregions that arise can be trivially treated by assigning an equal
contribution to each set of Fourier coefficients.

3.4 Refinement Techniques

In Section 3.2, a recursive algorithm for subdividing the domain was intro-
duced. We now carry out a more detailed study of the method and introduce
a gradual refinement which overcomes certain limitations of the original al-
gorithm.
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For illustrative purposes, all examples set the width of the coarsest grid
to be H = é. Similar results arise for the usual choice of H = %

3.4.1 The Original Refinement Algorithm

The original refinement algorithm of Section 3.2 is effective for a variety of
problems. For certain smooth regions, however, small slivers of a region can
be missed. Consider, for example, the shape found in Figure 11. Applying
the subdivision algorithm gives the mesh displayed in Figure 12a. A close
examination of the leftmost part of the shape indicates that a small, thin
region is missed by the algorithm.

The original refinement algorithm also produces errors when applied to
nonsmooth shapes. Consider, for example, the region displayed in Figure 13.
Such a shape may arise when a topological breaking occurs. Applying the
original subdivision algorithm to the shape gives the mesh displayed in Fig-
ure 14a. Clearly, an O(H?) error in the phase area is produced at the cell
containing the sharp corners. This corresponds to an O(At) error when
H =1 and n is chosen according to (5).

Although the errors produced by these flaws in the refinement technique
often are less than those arising from the MBO-method, we prefer a more ac-
curate refinement to achieve a greater confidence in our results. Furthermore,

a more accurate refinement is required whenever higher order, extrapolated
methods are used (see [17, 18]).

3.4.2 A Method for a Gradual Refinement

As we have seen in the previous subsection, the original subdivision algorithm
can miss small pieces of both smooth and nonsmooth shapes. We seek a
refinement which captures the entire interface at the level of the finest grid
subdivision, even for nonsmooth shapes.

To achieve this objective, a gradual refinement was implemented. This
method proceeds according to the original subdivision algorithm of Sec-
tion 3.2, with the following additional consideration:

Whenever any cell is refined, check the subdivision level of the
neighboring cells. Subdivide neighbors which are two or more
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Figure 11: A smooth region.
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Figure 12: Refinement methods for smooth regions.
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Figure 13: A problem with sharp corners.
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Figure 14: Refinement methods for corners.
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levels of refinement coarser.

This method accurately represents the narrow, sliver-shaped regions that
were missed using the original refinement. By using a fine subdivision in
a small neighborhood of the interface, this method even captures the rapid
variations in the front that arise from corners. See Figures 12b and 14b for
examples.

Certainly, this gradual refinement produces more cells than the original
approach. The order of the number of cells is unchanged, however. To see
this, note that cells of width

H
hy, =27"H, where 0 < ( < log, (z)

form a band at most two cells wide on each side of the interface. The length
of each band can be bounded by a constant, K, independent of h (e.g., bands
for a convex region are shorter than the perimeter of the domain). Letting
n; be the number of cells of width h, we observe that

Total number of cells = nj, + ny), + . tnmtng,
4K 4K 4K )
< T—I_ﬁ—l—"'—l—?—l—n’
8K )
< T—I—n.

Thus, (’)(% + n?) cells are required, which matches in order the result for the
original refinement. Implementation of this gradual refinement is somewhat
more involved than the original approach because cell neighbors must be
found. Many data structures appropriate for this task have been considered
[21, 20]. Our implementations define the grid as a list of vertices (cf. [9]),
and access the cells and their neighbors indirectly by traversing their vertices

18],
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3.5 Fast, Transform-Based Algorithms

The refinements of the previous sections lead to a large number of function
evaluations,

n—1
Ulz,y) = Z Cii exp(—m2[j2 4 (J')?]At) cos(mjx) cos(7j'y). (12)
5,5'=0
Because these evaluations occur on an unequally spaced grid, a fast Fourier
transform cannot be used. Direct evaluation of Eq. (12) at N, points, how-
ever, is often prohibitively expensive because O(n%N,) operations are re-
quired. Similarly, evaluation of the Fourier coefficients using Eqs. (6) and
(10) leads to a Fourier sum of the form

Np—1
i = Z dycos(mja,) cos(mi'y,) (13)

/=0

where 0 < j, 7 <n—1 and (z,,y,) are unequally spaced. Once again, a fast
Fourier transform cannot be used, and direct evaluation leads to O(n2N,)
operations.

Several methods for the fast evaluation of Eqgs. (12) and (13) have been
developed [3, 7, 23]. In [3], for example, an efficient and practical method
based on multiresolution analysis was developed that evaluates Eq. (12) at
N, points in

O (Nq log? (%) + n? 10g(n)) (14)

operations, and evaluates all n? Fourier coefficients of (13) in

1
O (Np log (—) + n? log(n)) (15)
€
operations, where € is the precision of the computation.
Using the fact that O %) refined cells arise (see Section 3.4.2), it is clear
that N, = O (%) and N, = O (%) The remaining O(n?) coarse grid cells

may be treated with a fast Fourier transform in O(n?log(n)) operations.
Applying these relationships, along with A < %, we see that a total of

0 ((%) log?(h) + n? log(n))
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operations arise at each iteration of the spectral discretization of the MBO-
method. As was shown in [18], the MBO-method produces an O(At?) error
in the position of a smooth curve at each step of the method when two phase
regions occur. To avoid degrading this accuracy (see Section 3.3.1), we select

h = O(At) to arrive at
O ! log?( At
N7 og ( )

operations per step. For the case of junctions, we may apply the same con-
siderations to determine that

0 (élog(At))

operations are required per step to avoid degrading the overall accuracy of

the method [18].

4 Comparison to the Usual Finite Difference
Discretization

There are several reasons why the spectral method described in this article is
preferred over the usual finite difference approach. These reasons are outlined
below.

1. As has been discussed in Section 3.1, only low frequency modes need to
be approximated provided At is not taken very small. A large amount
of computational work is saved by only treating these low frequency
modes.

2. The new, spectral method does not require any time-stepping between
torare and tg,.. + At. This eliminates a possible source of error and
produces large savings in computational work.

3. Local refinement is much simpler to implement for the new, spectral
approach because it is done in the context of a quadrature, rather than
a discretization of a differential equation.
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4. By using a spectral method, the error arising from discretizing the
heat equation can be nearly eliminated. This is an attractive feature,
because it makes extrapolation in At practical (see [18, 17]), which in
turn allows for larger time steps. When larger time steps are taken,
even fewer basis functions are required to solve the heat equation to a
given accuracy.

5. The original finite difference algorithm must satisfy (2) globally, or part
of the front may erroneously remain stationary. By recursively refining
near the interface, the new, spectral approach can essentially eliminate
this restriction.

6. The new, spectral method also gives an O (Z—i + h2) approximation of
the location of the front, which is greatly superior to the first order
approximation arising for finite differences. As we saw in the previous
section, this improved accuracy, in part, explains why

1
O | —log?(At
( ~g los( ))
operations are needed per step for the basic method. This compares
very favorably to the idealized finite difference result for smooth curves,

O

ﬁ), which was derived in Section 2.4.

These are indeed formidable advantages for the new, spectral method over
the usual finite difference approach. To illustrate the performance improve-
ment, consider the motion by mean curvature of the kidney-shaped region
displayed in Figure 15. Using the new, spectral method and an optimized
finite difference approach?, we compare the area lost over a time ¢t = 0.0125
with the exact answer, 0.0125 x 27 = 0.0785398 (see [16]). From Table I, we
see that the new, spectral method is adequate for finding solutions to within
a 1% error. The finite difference approach, however, becomes impractical
when accurate solutions are sought (see Table II).

Numerical tests for the problems described in the next section also found
that the new, spectral method often requires less than 0.1% of the compu-
tational time of the usual finite difference approach. For this reason, the

?The difference algorithm uses an adaptive time stepping method on a uniform mesh. A
multigrid technique was used to solve the implicit equations which arose from a backward
Fuler time-stepping scheme. See [18].
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Figure 15: A smooth interface at time, ¢.

numerical studies in the following section are carried out using the new,
spectral method.

At h Error | Time?
0.003125 2-9 4% 04 s
0.00078125 | 2—11 1% 8 s

Table 1. New, spectral method

Az | Error Time
11% 4% 85 s
% 3% 10341 s

5
Table II. Finite difference discretization

5 Numerical Experiments

In this section we report on various experiments using our algorithm. For
further quantitative studies for both mean curvature flow and other, more
general motions, see [18, 19].

3All timings were carried out on an HP735/100 workstation.
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5.1 A Smooth Three Phase Problem

To begin, consider the motion by mean curvature of the three phase problem
given in Figure 16. Using our new spectral method, the change in the area of
the central region was compared to the exact result* for several At. Because
an O(y/At) error seems plausible from the asymptotic results given in [18, 19],

an extrapolation in the area, \/51_1 (\/ﬁAm — Amt), was also computed to
eliminate the conjectured leading order error term. The results for a number
of experiments are given in Table ITI, below.

At Error in A%t | Conv. Rate | Error in Extrapolation | Conv. Rate
0.00625 2.60e-03 0.67 -1.08e-03 1.33
0.003125 1.70e-03 0.61 -4.63e-04 1.22
0.0015625 1.14e-03 0.57 -2.12e-04 1.13
0.00078125 7.79e-04 0.55 -1.00e-04 1.08
0.000390625 5.37e-04 0.54 -4.86e-05 1.05

Table TII. Results for a smooth three phase problem.
These results support the conjecture that the MBO-method is O(vAt)

for the case of junctions and suggest that extrapolation can be used in con-
junction with the new, spectral method to produce higher order estimates of
certain quantities of interest such as phase areas.

5.2 The Evolution of a Junction Through a Singularity

The evolution of more complicated problems may also be simulated using
our new, spectral discretization. Consider, for example, the motion by mean
curvature of the three phase problem given in Figure 17. Using our new,
spectral discretization of the MBO-method, estimates of the disappearance

4Applying the Von Neumann-Mullins parabolic law [16], gives us that the area of the
central phase obeys

dA 1 =«
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X

t=20.0

Figure 16: A smooth three phase problem.

29

—

t=0.04

time, T'2t, of the smallest phase were compared to the exact answer® for
several At. The results for a number of experiments are reported in Table TV,

below.

At Error in TAt | Conv. Rate
0.0025 0.04606 0.46
0.00125 0.03338 0.46
0.000625 0.02421 0.46
0.0003125 0.01754 0.46

Table TV. Results for the disappearance time of a phase region.

These results are suggestive of an approximately O(v/At) error for the

basic method.

5This result, 7= 0.33051, was obtained using Brian Wetton’s front tracking code; see

[4].
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t = 0.000 t=0.150

t = 0.300 t=0.325

Figure 17: The evolution of a junction through a singularity.
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t = 0.0000 1 = 0.0008
t = 0.0020 t = 0.0032
t = 0.0064 t=0.0128

Figure 18: A thin-stemmed barbell moving by mean curvature motion.
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5.3 A Three Dimensional Example

Interesting examples in three dimensions are also naturally handled by the
method. For example, Figure 18 displays the motion of a thin-stemmed
barbell using a step size, At = 0.0004. From these images, it is clear that the
center handle pinches off to form two pieces. As expected from [12], these
convex shapes become nearly spherical as they disappear. Note, however,
that a wider stem can produce a qualitatively different motion. For example,
[18] gives the motion of a thick-stemmed barbell which exhibits no topological
shape changes, and eventually becomes ellipsoidal and more spherical as it
disappears.

5.4 A Multiple Phase Example in Three Dimensions

The evolution of multiple phase junctions may also be studied using our new,
spectral discretization of the MBO-method. For example, Figure 19 displays
the motion of a spherical four phase shape using a step size, At = 0.0004.
From these images, we see that the four phase junction is stable under mean
curvature motion, as is expected from experimental studies of recrystallized
metal [11].
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