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Abstract

We propose a symmetry reduction technique whereby molecular dynamics (MD)
simulations for spherically symmetric gas bubbles can be accelerated. Results for an
imploding Xenon bubble containing fifty million particles — the smallest measured
sonoluminescing system — are presented.
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1 Introduction

Sonoluminescence (SL) is the phenomenon whereby the passage of sound
through a fluid causes a trapped bubble to pulsate so violently that it emits
flashes of light[1-5].

During the rarefaction half-cycle of the acoustic wave, the bubble expands to
its maximum radius, typically an order of magnitude greater than its ambient
radius. As the rarefaction gives way to compression the bubble begins to col-
lapse. This collapse continues well beyond the ambient radius due to the high
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inertia of the liquid and the bubble eventually implodes with a supersonic ve-
locity and its interior reaches temperatures and pressures inside large enough
to produce a flash of light. Light emission occurs because the input acoustic
energy is focused by many orders of magnitude.

There are a number of unanswered questions about sonoluminescence: the
foremost of them being the detailed mechanism of transduction of sound into
light. Experiments have not reached the point where parameters such as tem-
perature and density have been measured as a function of position inside of the
bubble. Furthermore, in view of the supersonic or near supersonic velocity of
collapse, sharp gradients in density are expected to form inside of the bubble.
Hydrodynamic models[6-10], however, assume local thermodynamic equilib-
rium everywhere within the bubble, i.e. near constancy of macroscopic ther-
modynamic variables over molecular scattering lengths and collisional time
scales. Though this assumption certainly holds for the greater part of the
bubble’s collapse it does break down near the minimum radius[11] where SL
originates. Another limitation of hydrodynamic models is that they require the
knowledge of the equation of state for the gas as well as transport processes
for the very extreme conditions of the bubble’s dynamics.

Molecular dynamics (MD) simulations[12,13] are, on the other hand, free of
the above limitations as they directly apply the mechanical laws to predict
the trajectory of each individual gas particle. A comprehensive MD model
of SL was presented in Ref. [11]. It treated the bubble as a hard sphere gas
driven by a spherical piston moving in accordance with the Rayleigh-Plesset
equation and also included a simple ionization model. With this model the
authors were able to simulate bubbles containing up to 10° particles on a
single workstation-grade computer with the simulation taking a few days to
complete. MD simulations of an imploding bubble have also been considered
in Refs. [14-16]. The goal of this paper is to extend the capabilities of the MD
method so as to be comparable in size with real-life SL systems.

2 The model

2.1 Description of the MD model

Our present work is based on the model of Ref. [11], a brief summary of which
follows.



2.1.1 The bubble wall

This model focuses on the simulation of single bubble sonoluminescence, so
that results can be compared to the best studied experimental SL systems.
Such bubbles remain spherical during their collapse, and their behavior is
parametrized by their ambient radius (the radius they have when at rest at
the ambient pressure) and their maximum radius (the radius they attain when
maximally expanded at the low pressure point of the applied sound field). The
ambient radius, Ry, is related to the number of gas particles, N, by the ideal
gas equation of state

4
Py (37ng) — KTy N, (1)

where Ty = 300 K and Py = 1 atm are the ambient temperature and the
pressure. The maximum radius R,, is chosen to yield the ratio of R,,/Ry = 10,
as is typical in experimental SL bubbles.

Since the bubble remains spherical during collapse, its boundary dynamics are
described entirely by the radius as a function of time, R(¢). We are concerned
with energy focusing processes and gas dynamics inside the bubble, and in this
spirit we will take R(t) as being known. A convenient model of the spherical
piston that captures some qualitative features of the supersonic collapse is
provided by Rayleigh-Plesset equation [2]

RE+ R = [P(R) ~ P/p (2)

with a van der Waals hard core equation of state

(F) = s, 3

v = 5/3, where a is the radius of the gas in the bubble when compressed to
its van der Waals hard core (Ry/a = 7.84 for Xe), p is the density of the
surrounding fluid, and the initial condition for the solution to Eq. (2) is that
R =0 when R = R,

We emphasize that the derivation of Eqgs. (2) and (3) applies only for small
Mach number motion and thus they are invalid as a fundamental theory for
SL [1]. Equation (2) also neglects viscous damping, acoustic radiation and
surface tension. However, it still reasonably approximates the gross bubble
pulsation, which justifies its use in our initial study.



2.1.2  Gas dynamics

It has been observed that for SL in water, the bubble must contain sufficient
amount of a noble gas. Thus in many single bubble SL experiments, the water
is first degassed to remove atmospheric gases, and then re-saturated with a
noble gas to produce pure noble gas bubbles. We will focus our gas dynamic
model on this system, since it is a frequent experimental model and also be-
cause it allows the simplest molecular gas dynamics models. Because the gas
is noble, it consists of isolated atoms that do not engage in chemical reactions.
Thus we can model it with simple gas particles that have no rotational or in-
ternal vibrational degrees of freedom, and which do not engage in any chemical
reactions with the water walls of the bubble, even at elevated temperatures.

Molecular dynamics simulations for such simple gas particles fall into two
broad categories, defined by the way they treat interatomic forces. The forces
can either be given by a potential that varies continuously with radius from
the atom center (“soft sphere”), or by a potential that is a step function of
radius (“hard sphere”). The latter particles behave simply like billiard balls.
While the continuous potential are more physically realistic, they are also
much more costly to compute with. For that reason we choose the hard sphere
model.

A hard sphere system evolves in time by a series of discrete collision events. No
explicit numerical integration is needed since impulsive collisions are carried
out only when atoms interact, and between collisions each atom follows an
independent linear trajectory. To illustrate, consider two particles separated
by a relative position r and having a relative velocity v. These particles collide
if their separation equals the atomic diameter o at some time t in the future.
If such a collision occurs, then ¢ is the smaller positive solution of

Ir + vt| = o, (4)
which has a solution
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Collisions are carried out impulsively so that the change in velocities preserves
energy and momentum. Specifically,

(r.-v)r.
o2

Av, = —Avy = — , (6)

where Avy is the change in velocity of the first particle, Av, is the change in
velocity of the second particle, and r. is the relative position at the time of



collision.

2.1.3 Bubble wall boundary condition

In our present model we will exclusively use the heat bath boundary condi-
tion. When a particle hits the boundary it is assigned a thermal velocity,
corresponding to the ambient liquid temperature 7Tj, in the wall’s local frame
of reference. Temperature T is assumed constant throughout the collapse.
Though an approximation, it appears to be justified on the basis that the
heat capacity of the liquid is much greater than that of the gas.

2.1.4 Hard sphere properties

The basic properties associated with the hard sphere model are the gas particle
mass and diameter. The mass is simply taken to be the mass of the noble gas
atom being simulated. The choice of a proper hard sphere diameter is a much
more difficult question. The diameter should represent the statistical average
distance of approach of the particles during collisions, and thus in general it
should depend on the collision energy.

A variety of models have been proposed to take this effect into account [18]. In
the present work we will use the formula for the atomic diameter as a function
of the collision energy provided by the variable soft sphere (VSS) model [19,20]

o — (5(05+ 1)<04+2>(m/7r)1/2(kTref>w>l/2’ (7)

1601(9/2 — w) e BX

where k is the Boltzmann’s constant, m is the mass of the particle, w is the
dimensionless viscosity index, and « is a dimensionless constant for each gas.
The constant fi,.r represents the viscosity at the reference temperature (7).
= 273 K) and pressure (1 atm). Finally, E; = (1/2)m,c? is the asymptotic
kinetic energy, where m, is the reduced mass and c, is the relative velocity
between the particles. For Xenon, w = 0.85, fiey = 2.107 x 107° N s m~? and
a=1.44.

2.1.5 lonization Effects

Near the minimum radius of the bubble, collisions become sufficiently energetic
to ionize the gas atoms. Ionization exerts a very strong cooling effect on the
gas, since on the order of 10 eV of thermal energy is removed from the gas
by each ionization event. The ions and free electrons produced by ionization
will move according to Coulomb forces, but their inclusion is very expensive



computationally due to the long range effects, so they will not be included in
this first treatment. Instead, we will limit ourselves to the simplest possible
model of ionization and will only consider the impact of ionization on energy
accounting.

For the purpose of energy accounting, an ionization ultimately produces two
losses: the energy of ionization is lost immediately, and the emitted cold elec-
tron will quickly be heated to thermal equilibrium with the gas through subse-
quent electron-gas collisions, thus extracting an additional one particles worth
of thermal energy by the equipartition of energy.

For our model, whenever the collision energy (the kinetic energy in the center
of mass frame) exceeds the ionization potential we will simply assume that
ionization occurs with a probability of 1 and we will deduct a suitable amount
of energy from the pair. We also keep track of how many electrons each par-
ticle has lost, so that we can make use of the appropriate next ionization
energies and calculate the local ionization levels. The direction of gas particle
propagation is updated exactly as without ionization.

2.2 Scaling

To assess the feasibility of modeling large bubbles with MD one needs to
understand how the overall simulation time scales with the number of particles
in the bubble. In Ref. [11] the motion of the bubble’s wall is approximated by
the free collapse, no-dissipation Rayleigh-Plesset equation (2) . For the greater
part of the collapse, however, the gas pressure P;(R) can clearly be neglected.
The resulting equation,

RR+ 21%2 + Py/p=0, (8)

is invariant under simultaneous multiplication of the radius and time by the
same constant. Therefore the collapse time is approximately proportional to
Runaz < NY3 N being the total number of particles. Using the fast cell-based
algorithm of Ref. [12] the computational time is in turn proportional, for a
given time of collapse and assuming similar conditions inside the bubble, to
N log N, where the logarithmic factor accounts for the corresponding increase
in the size of the event calendar. We thus arrive at the conclusion that the
computer time needed to simulate a bubble consisting of N particles goes
roughly as N*3log N.

One can see therefore that despite the seemingly small gap between the num-
bers achieved in Ref. [11] and real physical sonoluminescing systems the brute
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Fig. 1. Comparison of simulations of a full sphere with the corresponding octant (a)
at the minimum radius and (b) at the peak temperature for a Xenon bubble con-
taining 10% atoms with heat bath boundary conditions and VSS diameter particles.

force approach would take about a year to simulate even the smallest such
system known [17], containing 50 x 10® atoms.

2.3 Searching for symmetry reduction

Instead of a brute force approach we seek to take advantage of the spherical
symmetry of the problem. After all, hydrodynamic simulations of a spherically
symmetric system are essentially one-dimensional, and though MD can hardly
be made one-dimensional, one should be able to achieve some reduction in the
size of the simulated region. The following simple thought experiment will
justify our approach.

Molecular dynamics simulations are designed to be completely insensitive to
the microscopic initial conditions as long as the initial macroscopic state has
the correct energy, momentum, etc. (In fact it is common to initialize an MD
system by placing atoms in nodes of some regular structure and assigning all
particles the same speed as one expects the system to thermalize very rapidly.)

Thus we imagine an SL bubble in an initial microscopic state such that its
southern hemisphere is a mirror image of its northern hemisphere. In exact
arithmetic, this initial symmetry will be preserved throughout the collapse.
Whenever a particle from the northern hemisphere approaches the equator

0.01

r, um

(b) peak temperature
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Fig. 2. Various size cones compared to the full sphere for a bubble of 105 Xenon
atoms. Snapshots are taken at the minimum radius.

plane from above its mirror image approaches from below and the ensuing
collision is as if both particles bounced off a rigid wall separating the two
hemispheres. Thus the full system is completely equivalent to a hemispherical
system, bounded by a rigid adiabatic wall.

Of course, one may continue this process of dividing the simulation region in
two, resulting in quarters, octants, etc. An octant is especially easy to work
with, so we choose it as our first test of this idea. All simulations presented in
this paper are based on the model of Ref. [11]. We choose Xenon as the gas
inside, for reasons explained below, using variable soft sphere (VSS) model for
the diameter of particles, heat bath boundary conditions at the wall and the
simple ionization model described in Ref. [11].

Figure 1 compares the results of an octant simulation with the corresponding
full sphere simulation for a Xenon bubble containing one million particles.
Two snapshots are taken at the minimum radius and at the peak temperature,
which occurs slightly later. As one can see from the figure the octant is virtually
identical to the full sphere with the exception of statistical fluctuations in
regions where density is very low.

2.4 Replacing full sphere with cone

The question now arises as to how far one can go along the path of dividing
the sphere into successively smaller pieces (wedges). At the first glance it



seems that it can be done indefinitely since in a spherically symmetric bubble
any two wedges of the same size have to be thermodynamically equivalent to
each other. On the microscopic level however the sharp corner of the wedge
creates a problem. No molecule can come closer to the center of the bubble
than d/(2sind), where d is the diameter of the molecule and 6 is the half-
angle of the wedge, effectively creating vacuum in the center. Alternatively one
can impose a somewhat different boundary condition, allowing the centers of
particles to approach the wedge boundary rather than their edges. This would
help to avoid the problem with the vacuum in the center but in effect would add
extra, unphysical, volume to the simulation region. Regardless of the approach
one adopts, it is clear that the small central region, on the order of d/(2sin#)
in radius, is not treated correctly and if the wedge angle is made too small the
reduced simulation will cease to resemble the actual full-sphere bubble. Xenon
atoms have the largest diameter of the gases modeled in Ref. [11] making it
the worst case scenario for symmetry reduced MD simulations — a reason we
chose it as our test model.

Though we provided a simple theoretical justification for cutting the bubble
in halves it seems unlikely that powers of 1/2 fractions of the sphere would
have a special role. On the contrary, the only limiting factor seems to be the
sharp angle at the center. However if we want to achieve the smallest size of
the simulation region possible for a given angle the wedge shape is clearly not
optimal and one is naturally led to replace it with a cone.

Before the cone method can be applied to modeling large bubbles we need to
test it on a system small enough so that we can compare the cone against the
full sphere. For the full sphere system we once again choose a Xenon bubble
containing one million particles, which was the largest system modeled in
Ref. [11]. We have found that the cone method produces satisfactory outcomes
down to angles of about 15°, corresponding to about 17,000 particles in the
cone. Figure 2 provides, as an example, snapshots of the system taken at
the minimum radius for simulations of various cone sizes. At small angles the
statistical noise for temperature becomes noticeable. The reason for this is that
during the final stages of the collapse the temperature peak rides ahead of the
density and thus occurs in a low density region with few particles. However
even in the 15° simulations, which incidentally require only about 20 minutes
to run compared to more than a day for the full sphere, we do not yet observe
significant systematic errors. This demonstrates that the cone method can be
strongly beneficial for modeling large size bubbles.



3 50,000,000 particle bubble

In this section we simulate the collapse of a sonoluminescing bubble with an
ambient radius of 0.79 ym and containing a total of 50 x 10° Xenon atoms.
Heat bath boundary conditions and the VSS diameter model are applied.
The simulations start at the maximum radius (7.9 pm) and continue past
the minimum (0.10 pgm) to include the shock wave focusing, hot spot and
beyond. We also analyze the convergence of the cone method and discuss its
applicability.

3.1  Simulation results

As we have already mentioned, performing a full sphere simulation of systems
containing more than a few million particles does not seem feasible. By using
the cone it is always possible to reduce the system to any desirable size. How-
ever it is difficult to predict a priori what cone angle will be sufficient for the
cone simulation to represent a reasonable approximation to the full sphere. In
practice one has to choose an initial angle based on the estimated run time
and then compare the results with those obtained using larger and /or smaller
angles.

We first present the results of the 20°, 15° and 10° simulations. They span a
factor of 4 range in terms of the number of particles and are found to be in
excellent agreement among themselves.

For the greater part of the collapse the conditions inside the bubble are largely
uniform. As the bubble approaches its minimum radius® , however, we observe
a dramatic increase in the density near the edge. Shortly before the minimum
radius, this leads to a steeply profiled wave being launched from the boundary
inward (see Figure 3(a)). As the wave moves toward the center the temper-
ature increases very rapidly, with the temperature peak leading the density.
Eventually the temperature becomes high enough that ionization begins. This
ionization subsequently leads to the cooling of the gas behind the wavefront.
As the wave approaches the center the density profile essentially becomes dis-
continuous (see Figure 3(b)). When this shock wave hits the center the energy
focusing is so strong that the temperature? in the center exceeds 2 x 10° K
and the gas is very strongly ionized (see Figure 3(c)). Following this implosion

I The moment we refer to as ‘the minimum radius’ is the one predicted by the
Rayleigh-Plesset equation. In the actual simulation however vacuum forms near the
boundary and the bubble essentially continues its collapse beyond this point

2 All thermodynamic quantities are obtained through averaging over spherical shells
that are (1/50)th of the bubble radius
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Fig. 3. The evolution of a Xenon bubble with the ambient radius of 0.79 ym and
containing 50,000,000 atoms. ‘Minimum radius’ refers to the the minimum radius
as predicted by the Rayleigh-Plesset equation. In the actual simulation, vacuum
forms near the boundary and the bubble essentially continues its collapse past the
predicted radius.

the wave is reflected from the center as illustrated in Figure 3(d).

Figure 4 shows the temporal characteristics of the bubble collapse near the
minimum radius. The temperature graph shows a very strong and sharp spike
exceeding two million degrees and a peak width of no more than 0.2 ps. The
peak width is an important quantity that allows us to estimate the duration
of the light emission. Assuming that the emission mechanism is thermal in
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nature, the flash width equals the temperature peak width at the appropriate
turn-on threshold level. A distinctive feature of the present simulation that can
be seen in Figure 4 is that the density and temperature peaks coincide, unlike
the earlier simulation with N = 10° particles, where density lags behind the
temperature. Physically this should result in a higher intensity for the light
emission.

3.2 Error analysis

The errors produced by the cone simulations fall into two categories — sta-
tistical and systematic. The former appear in regions of low density where
the number of particles is too small for accurate measurement of thermody-
namic parameters. If desired, this type of error can be alleviated by averaging
over several runs, as Figure 5(a) demonstrates. Systematic errors, on the other
hand, are artifacts of replacing the full sphere with a small part of it — the
cone. From the analysis of the previous section we expect them to be especially
pronounced in the central region, approximately d/sin6 in size. Figure 5(b)
shows that the deviations observed in the bubble center around the shock fo-
cusing time are of the systematic type in the 5° simulations. To investigate this
effect in more detail we plot the density, temperature, velocity and ionization
at the bubble center as functions of time for various size cone simulations.

Figure 4 shows that the main effects of reducing the size of the cone are higher
densities and lower temperatures in the center as well as an overall time delay
in the progression of the bubble dynamics. The figure shows that the 20°, 15°
and 10° simulations are in good agreement among themselves while the 5°
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cone shows a significant discrepancy in temperatures, densities and timing.

In order to study the convergence of the cone method we plotted (Figure 6)
the maximum temperature and the time delay (“time at peak temperature”
- “time at minimum radius”) vs. the cone angle. Both graphs display satu-
ration toward larger angles so we fit them to an exponential decay function.
This seems to approximate the data very well. Both exponentials have a char-
acteristic “decay angle” of about 5 degrees (“zy” in the figure) and saturate
at values (“yo” in the figure) only marginally different from those obtained
with the 20° simulation. The latter parameter gives us an estimate of what
we would obtain using the full sphere simulation had we actually been able to
do it.

3.3 How small a cone 1s too small?

The above analysis may seem to indicate that cone simulations with an angle
of 10° or more can be trusted while 5° cones give a significant error. There are,
however, some additional criteria which come into play when selecting a cone
angle. For example, the results we have presented depend on our (arbitrary)
choice to average over (1/50)th of the total radius. Had we chosen to average
over a smaller region, we would have likely had to choose larger cone angles
to get adequate convergence. Conversely, if we settled for lower resolution,
or perhaps did not care that much about what was happening in the center

14



of the bubble, smaller cone angles would suffice. Figure 7 shows a snapshot
of the system taken at some time between the minimum radius and the hot
spot for 3°, 2° and 1° simulations and compares the results to simulations
obtained with the much larger 20° cone. Though the smaller angles give some
characteristic time shift (which at this stage is still unnoticeable with the 5°
simulation), it is clear that these tiny cones give essentially the correct profiles
for most of the bubble’s volume.

Thus the optimum cone size clearly depends on what we care to know about
the collapse. Many important questions, e.g. whether an imploding shock wave
develops, do not require the knowledge of the processes occurring in the center.
To answer such questions, small-angle cone simulations may be ideal, as they
possess all the advantages of MD simulations, while at the same time being
quite fast. For instance, small-angle cone simulations of Figure 7 take just a
few minutes to run on a modern PC.

4 Summary and future work

The one dimensional nature of spherically symmetric macroscopic motion can
be used to speed up MD calculations through the use of the cone geometry.
Imploding shocks predicted in Refs. [7,21] can be captured with cones as small
as two degrees. Such simulations run in just a few minutes on a modern PC,
which compares very favorably with the months required to run the complete
system without symmetry reduction. These fast calculations are also capable
of capturing a non-hydrodynamical aspect of the motion: namely that dur-
ing the pre-focusing moments of shock wave motion the temperature spike
precedes the density spike (e.g. Figure 7). This is due to the tail of the statis-
tical distribution running ahead of the density signal. This behavior occurs in
the same region as where the temperature varies significantly over distances
shorter than a mean free path [11]. We refer to the steeply sloped density
discontinuities as a shock wave because the simulations show that they move
much faster (8,000m/s) than the sound velocity in the ambient gas at the lead-
ing edge. Indeed the shock moves faster than the sound velocity calculated for
the peak of the temperature in the bubble.

In conclusion we would like to list a number of possible directions for improve-
ment in our current model, some of which are necessary before attempting a
comparison to experimental measurements.

e An immediate improvement would be to include the effects of dissipation
into the Rayleigh-Plesset equation. This will slow the collapse and decrease
temperatures. Note that, even then, shock waves appear in our (preliminary)
simulations.
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The next step should be to couple self-consistently the Rayleigh-Plesset
equation to the MD system. This means that the adiabatic pressure of
Eq. (3) must be replaced with the actual pressure of the MD system mea-
sured at the boundary. Since the bubble is highly non-uniform during the
later stages of the collapse, with the density being maximum near the bound-
ary, this will further slow the motion of the wall.

As mentioned in The model section, the Rayleigh-Plesset equation is derived
for small Mach number motion and thus is invalid as a fundamental theory
for SL. So, on the next level, it must be replaced with the Navier-Stokes
equations for the surrounding fluid coupled to the MD system inside the
bubble.

In the final stages of the collapse the interatomic collisions become so fre-
quent that the soft sphere model, otherwise prohibitively expensive compu-
tationally, may surpass the hard sphere model in computational efficiency.
It is also physically appropriate to describe the high density regime with
the real interaction potential.

The assumption that the kinetic energy after an ionization event is equally
distributed between electron, and ion and atom should be compared and
perhaps replaced with the assumption that the electron’s kinetic energy is
negligible during the time scales under consideration [22]. This modification
will raise temperatures.
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